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Summary

Endothelial dysfunction, which is characterized by impairment of nitric oxide (NO)
bioavailability, plays an important role in the development of arterial hypertension.
The L-arginine-NO pathway is closely related to oxygen transport to tissue.
Endothelial dysfunction in patients with arterial hypertension can affect haemo-
globin-oxygen affinity and tissue oxygen supply. Alterations in blood oxygen
transport indices may play role in the pathogenesis of arterial hypertension. The aim
of the present study was to investigate the effect of the beta-selective adrenoblocker
nebilet (nebivolol) on blood oxygen transport indices and on endothelial
dysfunction in patients with arterial hypertension. The study population included
52 patients with grade II and grade III arterial hypertension. The results of our
studies indicate that endothelial dysfunction in hypertensive patients significantly
changes blood oxygen indices. The endothelium can be involved in formation of
these impairments because only NO synthesized in sufficient amounts can maintain
normal blood flow and oxygen transport to tissues. Endothelial dysfunction impairs
formation of different haemoglobin NO-derivatives, that influence not only on the
release of NO at different sites of the vascular bed, but also on haemoglobin-oxygen
affinity, and accordingly, on optimal blood oxygenation in capillaries of pulmonary
circulation and its deoxygenation in capillaries of systemic circulation. Treatment of
hypertensive patients with nebivolol corrects the blood oxygen transport indices,
stimulates NO production and improves endothelium-dependent dilatation.
Normalization of blood oxygen transport indices may regulate the activity of the
L-arginine-NO pathway. Thus, nebivolol may improve efficiency of the treatment of
hypertension.

Introduction

Recent data demonstrate that the global burden of hypertension

is an important and increasing health problem worldwide and

that awareness and control of hypertension vary considerably

(Kearney et al., 2005). Nitric oxide (NO) is a molecule that has

gained recognition as a crucial modulator of vascular disease.

NO has a number of intracellular effects that lead to vasorelax-

ation, endothelial regeneration, inhibition of leucocyte chemo-

taxis and platelet adhesion (Luscher & Barton, 1997; Ignarro &

Napoli, 2005). Endothelial dysfunction, which is characterized

by impairment of NO bioavailability, plays an important role in

the development of arterial hypertension (Hermann et al.,

2006). The main mechanisms of impairment in L-arginine-

NO pathway metabolism are the absence of either the initial

substrate L-arginine or cofactors, decreased expression of

endothelial NO-synthase and a raised level of endogenous NO

inhibitors as well as NO inactivation by free radicals (O2
), OH*)

(Kelm & Rath, 2001; Landmesser & Drexler, 2007). Recent

research on endothelial dysfunction supports its clinical signif-

icance and has led to important insights in the pathophysiology

of cardiovascular diseases and at the same time provides an

important opportunity to develop new therapeutic approaches.

Endothelial function represents a valuable surrogate endpoint to

assess the impact of therapeutic interventions (Landmesser &

Drexler, 2005).

The L-arginine-NO pathway is closely related to oxygen

transport to tissue. Oxygen is known to be an important factor

regulating NO-synthase activity (Cannon, 1998). NO maintains

the blood flow level, thus regulates oxygen supply to tissues.
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A disturbance in endothelial NO-synthase function stipulates to a

great extent the loss of control over vascular tone, thus resulting

in a reduction of an adequate supply of oxygen to tissue.

Endothelial dysfunction in patients with arterial hypertension can

affect haemoglobin-oxygen affinity and tissue oxygen supply.

Alterations in blood oxygen transport indices may play role in

the pathogenesis of arterial hypertension (Zinchuk et al., 2004).

Acting against pathological processes causing hypoxia will

improve endothelial dysfunction in patients with arterial

hypertension. In clinical pharmacology, some new drugs have

recently been produced, which are capable of increasing NO

production in the organism. One of these drugs is nebivolol, a

new �atypical� third generation beta-adrenoblocker that has

pronounced vasodilatatory properties (Cockcroft, 2004). How-

ever, some NO-mediated pharmacological effects of nebivolol

remain to be studied (Ignarro, 2004).

The aim of the present study was to investigate the effect of

the beta-selective adrenoblocker nebilet (nebivolol) on blood

oxygen transport indices and on endothelial dysfunction in

patients with arterial hypertension.

Methods

Subjects

The study population included 52 patients with grade II and

grade III arterial hypertension who were examined and treated

in the First City Hospital of Grodno. Arterial hypertension was

diagnosed in accordance to the WHO ⁄ ISH criteria approved in

1999. Grade II arterial hypertension is defined as systolic blood

pressure >160 mmHg and ⁄ or diastolic blood pressure

>100 mmHg. Grade III arterial hypertension is defined as

systolic blood pressure >180 mmHg and ⁄ or diastolic blood

pressure >110 mmHg (European Society of Hypertension,

2003). Patients with diabetes mellitus, acute infectious diseases,

kidney insufficiency, with atrial fibrillation, chronic congestive

heart failure and acute disturbance of cerebral circulation were

excluded from the study. Causes of secondary hypertension

were excluded on the basis of clinical history, physical

examination and by appropriate instrumental and biochemical

tests. None of the subjects had hypercholesterolemia, none of

them were smokers. Table 1 summarizes the clinical character-

istics of the study population.

The control group included 24 healthy volunteers (10 women

and 14 men) with the mean age of 37Æ9 years (24–52). Normal

blood pressure is defined as systolic blood pressure

<130 mmHg and diastolic blood pressure <85 mmHg.

Study design

This was an open-label randomized study. Patients, who met the

required criteria and gave written consent, were categorized into

treatment groups using a simple randomization method. Group

I included 17 patients with grade II hypertension (8 men),

Group II included 12 patients with grade III hypertension (6

men). For 2 weeks patients from the I an II groups were treated

with the beta-adrenoblocker – Atenolol (4-(2-Oxy-3-izopropy-

laminoproxy)phenyl-acetamide) with dosage of 50 mg ⁄ day,

and the angiotensin-converting enzyme inhibitor – Enalapril

maleate (1-[N-[S]-1-carboxy-3-phenylpropyl]-L-alanyl]-L-pro-

lin-1¢ ethylic ether) 20–40 mg ⁄ day. Group III included 11

patients with grade II hypertension (5 men) and Group IV–12

patients with grade III hypertension (5 men). For 2 weeks the

patients from the III and IV groups were treated with the beta-

adrenoblocker – Nebivolol (R*[S*[S*-(S*)]]]-a,a¢-[imin-

obis(methylene)]bis[6-fluoro-3,4-dihydro-2H-I-benzopiran- 2

metanol) with dosage of 5 mg ⁄ day, and the angiotensin-

converting enzyme inhibitor – Enalapril maleate 20–

40 mg ⁄ day. The patients from the above mentioned groups

corresponded to the same sex, age, duration of arterial

hypertension and approximate body weight.

A venous blood sample was collected in heparinized syringes.

The protocols of the studies were approved by the Ethics

Committee of Grodno State Medical University, and written

consent was obtained from each participant. All the experimen-

tal procedures followed institutional guidelines. All the studies

were performed in the morning. The subjects fast the overnight

for at least 12 h before the examination.

Determination of plasma nitrite ⁄ nitrate level

The level of the end NO metabolites, nitrite ⁄ nitrate, was

measured in blood plasma spectrophotometrically using the

Griess method (Moshage et al., 1995). The participants of

the investigation have had low nitrite and nitrate diet during

Table 1 Clinical characteristics of hyperten-
sive patients and normotensive control subjects.

Controls

grade II

hypertension

grade III

hypertension

Number 24 28 24
Age (years) 37Æ9 ± 1Æ9 43Æ3 ± 2Æ1 51Æ4 ± 1Æ23
Sex (male ⁄ female) 14 ⁄ 10 13 ⁄ 15 11 ⁄ 13
Duration of the disease (years) – 5Æ4 ± 0Æ8 11Æ2 ± 1Æ2
Total cholesterol (mmol l) 4Æ70 ± 0Æ41 5Æ12 ± 0Æ45 5Æ16 ± 0Æ34
Glucose (mmol l) 5Æ1 ± 0Æ6 5Æ3 ± 0Æ5 5Æ4 ± 0Æ4
Creatinine (lmol l) 72Æ3 ± 4Æ2 73Æ8 ± 5Æ6 76Æ2 ± 6Æ6
Systolic pressure (mmHg) 118Æ8 ± 1Æ22 170Æ54 ± 2Æ08 194Æ7 ± 3Æ65
Diastolic pressure (mmHg) 74Æ7 ± 1Æ17 102Æ3 ± 1Æ44 111Æ8 ± 3Æ66
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the study and 3–4 days before the studies (Wang et al.,

1997).

Determination of endothelial function

The endothelial function was measured by strain-gauge pleth-

ysmography. The measurements were carried out in a room

with a constant temperature of 22–24�C. First, the forearm

blood flow was measured at rest (after the patient had rested in

supine position for 20 min). Then we studied the endothelium-

dependent and endothelium-independent mechanisms (Celer-

majer et al., 1992). The endothelium-dependent dilatation of

peripheral arteries was induced by reactive hyperemia using a

blood pressure cuff which was placed around the arm and

inflated up to 280 mmHg within 5 min. The changes in the

forearm blood flow were estimated after the removal of the cuff

for 5 min. After the recovery of the initial forearm blood flow,

the endothelium-independent response was studied, for which

the patient had to take 0Æ5 mg of nitroglycerine sublingually.

The forearm blood flow was measured before the nitroglycerine

intake and within 15 min after its intake. The percentage

changes in the forearm blood flow at 90th second after the

release of occlusion and the forearm blood flow at the third

minute after the nitroglycerine intake were calculated taking

into account the baseline measurements. The criterion for

endothelial dysfunction was less than 10% increase of the

forearm blood flow after reactive hyperemia.

Measurements of blood oxygen transport indices

The blood oxygen transport indices: blood pO2, pCO2, pH, the

actual of buffer bases excess, the standard excess of buffer bases,

the standard hydrocarbonate concentration and the concentra-

tion of total carbone dioxide were measured using an ABL-330

�Radiometer� microgasoanalyzer (Radiometer, Copenhagen,

Denmark). The haemoglobin-oxygen affinity was determined

according to the p50 index (the blood pO2 corresponding to its

50% oxygen saturation) by the �mixing� method in the

modification of Scheid & Meyer (1978), the standard p50 was

assessed under standard conditions (pH = 7Æ4;

pCO2 = 40 mmHg and T = 37�C), whereas the actual p50

was calculated for the real values of these factors. On the basis of

the p50 values obtained, the Hill equation was used to calculate

the position of the oxyhaemoglobin dissociation curve.

The above studies were carried out before and after the two-

week treatment.

Statistical analysis

Differences between 2 means were compared with use of the

Student�s two-tailed unpaired t-test. Pearson�s r coefficient was

used to test the correlation. The results are presented as

means ± SEM. Differences were considered statistically signif-

icant at a level of P<0Æ05.

Results

Our studies showed that compared to healthy subjects, patients

with grade II hypertension (Groups I and III) had 34Æ4%

(P<0Æ001) and 32Æ4% (P<0Æ001) decreased blood plasma

nitrate ⁄ nitrite contents, whereas Group II and IV patients (grade

III hypertension) showed 47Æ5% (P<0Æ001) and 44Æ4%

(P<0Æ001) diminished blood plasma nitrate ⁄ nitrite contents

(Table 2).

According to the plethysmography data, the grade II

hypertensive patients (Groups I and III) demonstrated reduced

(P<0Æ001) endothelium-dependent vasodilatation, as compared

to healthy subjects (Table 2). Endothelial dysfunction was found

in 23Æ5% of the Group I patients and in 27% of the Group III

patients (less than 10% increased forearm blood flow after

reactive hyperemia). In grade III hypertensive patients (Groups

II and IV), the endothelium-dependent vasodilatation was

Table 2 Plasma level concentration of nitrite ⁄ nitrate (lmol l), endothelium-dependent dilatation and endothelium-independent dilatation (%) in
patients with arterial hypertension before and after treatment (M ± m).

Index Control

Atenolol, enalapril maleate Nebivolol, enalapril maleate

Group I II
grade AH

Group II III
grade AH

Group III II
grade AH

Group IV III
grade AH

Number 24 17 12 11 12
nitrite ⁄ nitrate (lmol l) before treatment 24Æ85 ± 1Æ13 16Æ29 ± 0Æ65a 13Æ04 ± 0Æ92a 16Æ80 ± 0Æ95a 13Æ81 ± 0Æ97a

after treatment 18Æ56 ± 0Æ78b 14Æ62 ± 0Æ93 23Æ41 ± 1Æ21b 19Æ14 ± 1Æ20 b

FBF on reactive hyperemia (%) before treatment 30Æ90 ± 1Æ71 15Æ90 ± 1Æ78a 9Æ30 ± 1Æ76a,c 16Æ80 ± 2Æ57a 9Æ70 ± 1Æ71a,c

after treatment 18Æ50 ± 1Æ78 12Æ90 ± 1Æ92 29Æ01 ± 2Æ90b 18Æ94 ± 2Æ32b

FBF on nitro-glycerine (%) before treatment 34Æ89 ± 2Æ01 32Æ3 ± 2Æ65 28Æ95 ± 2Æ74 34Æ40 ± 2Æ67 30Æ30 ± 2Æ43
after treatment 32Æ00 ± 2Æ30 28Æ90 ± 2Æ66 34Æ10 ± 2Æ98 30Æ60 ± 2Æ64

aSignificant differences from control group.
bSignificant differences after treatment.
cSignificant differences from II grade AH.
AH, arterial hypertension; FBF, forearm blood flow.
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diminished in comparison with both healthy subjects (P<0Æ001)

and grade II hypertension patients (P<0Æ05). Endothelial

dysfunction was observed in 75% of the cases in Groups II

and IV. Endothelium-dependent vasodilatation was maintained

in all examined groups (19% showed enhanced forearm blood

flow after nitroglycerine intake). The hypertensive patients

demonstrated a moderate positive correlation between the

nitrate ⁄ nitrite level and the value of the increase in forearm

blood flow after reactive hyperemia (r = 0Æ48, P<0Æ01).

Contrary to controls, the grade II hypertensive patients

showed 5Æ4% (P<0Æ05, Group I) and 5Æ7% (P<0Æ05, Group III)

increases in actual p50. The standard p50 was raised by 6Æ8%

(P<0Æ05, Group I) and by 6Æ7% (P<0Æ05, Group III), the pO2

was diminished (P<0Æ05), and the value for pCO2 was elevated

(P<0Æ05) (Table 3). The reduced haemoglobin-oxygen affinity

in these patients should be considered as a compensatory

response to hypoxia. As compared to controls, the grade III

hypertensive patients had 5Æ1% (P<0Æ05, Group II) and 5Æ7%

(P<0Æ05, Group IV) actual p50 decreases. Their standard p50

values were diminished by 6Æ3% (P<0Æ01, Group II) and by

5Æ9% (P<0Æ01, Group IV), which reflects the elevation of

haemoglobin-oxygen affinity (Figs 1 and 2). In this situation,

the pO2 value was decreased (P<0Æ01), and that of pCO2 was

increased (P<0Æ01) compared to healthy subjects. The pH value

decreased to 7Æ3 ± 0Æ01 units (P<0Æ05). These variations

should be considered as a decompensation of blood oxygen

indices that enhances tissue hypoxia. A moderate correlation

was found between the pO2 and the blood plasma

nitrite ⁄ nitrate level (r = 0Æ51, P<0Æ01) as well as between the

pO2 and the increases in forearm blood flow (r = 0Æ41,

P<0Æ05). A moderate positive correlation was noted between

the standard p50 and the blood plasma nitrite ⁄ nitrate level

(r = 0Æ44, P<0Æ01).

Thus, the results of our studies indicate that endothelial

dysfunction in hypertensive patients significantly changes blood

oxygen indices.

After 2 weeks of atenolol and enalapril treatment, the blood

plasma nitrite ⁄ nitrate levels in grade II hypertensive patients

(Group I) were raised by 13Æ9% (P<0Æ05) (Table 2). However,

the endothelium-dependent vasodilatation remained

unchanged. In patients with grade III arterial hypertension

(Group III), this treatment did not essentially change the

nitrite ⁄ nitrate levels and endothelium-dependent vasodilatation.

The atenolol and enalapril intake by grade II hypertensive

patients (Group I) normalized haemoglobin-oxygen affinity,

(standard p50 was reduced by 5Æ2% (P<0Æ05)) and increased

pO2 (P<0Æ05) (Table 3). In grade III hypertensive patients

(Group III), our treatment reduced haemoglobin-oxygen

Table 3 Blood oxygen transport indices in patients with arterial hypertension before and after treatment (M ± m).

Index Control

Atenolol, enalapril maleate Nebivolol, enalapril maleate

Group I AH
II grade

Group II AH
III grade

Group III AH
II grade

Group IV AH
III grade

Number 24 17 12 11 12
p50 act (mmHg) before treatment 28Æ62 ± 0Æ36 30Æ17 ± 0Æ74a 27Æ16 ± 0Æ53a 30Æ26 ± 1Æ03a 26Æ99 ± 0Æ74a

after treatment 28Æ93 ± 0Æ39 28Æ79 ± 0Æ42b 29Æ04 ± 0Æ47 29Æ48 ± 0Æ85b

p50 stand (mmHg) before treatment 26Æ75 ± 0Æ25 28Æ58 ± 0Æ37a 25Æ06 ± 0Æ23a 28Æ54 ± 0Æ39a 25Æ15 ± 0Æ36a

after treatment 26Æ92 ± 0Æ45b 26Æ73 ± 0Æ33b 26Æ74 ± 0Æ36b 27Æ25 ± 0Æ60b

pO2 (mmHg) before treatment 36Æ10 ± 0Æ96 31Æ01 ± 0Æ81a 30Æ09 ± 0Æ71a 31Æ01 ± 0Æ81a 30Æ36 ± 0Æ71a

after treatment 33Æ65 ± 0Æ71b 31Æ94 ± 1Æ50 35Æ16 ± 1Æ36b 32Æ16 ± 0Æ86
MetHb (%) before treatment 0Æ73 ± 0Æ12 0Æ79 ± 0Æ09 0Æ94 ± 0Æ22 0Æ61 ± 028 0Æ74 ± 0Æ20

after treatment 0Æ64 ± 0Æ12 0Æ56 ± 0Æ21 0Æ74 ± 0Æ20 0Æ77 ± 0Æ29
pH (units) before treatment 7Æ34 ± 0Æ007 7Æ32 ± 0Æ008 7Æ30 ± 0Æ010a 7Æ32 ± 0Æ007 7Æ30 ± 0Æ01a

after treatment 7Æ33 ± 0Æ010 7Æ32 ± 0Æ010 7Æ33 ± 0Æ009 7Æ32 ± 0Æ01
pCO2 (mmHg) before treatment 49Æ71 ± 1Æ22 55Æ38 ± 1Æ53a 56Æ30 ± 1Æ05a 55Æ27 ± 1Æ68a 57Æ81 ± 1Æ88a

after treatment 52Æ91 ± 1Æ59 52Æ44 ± 1Æ05b 50Æ75 ± 1Æ15b 51Æ93 ± 1Æ64b

HCO3
) (mmol l) before treatment 27Æ85 ± 0Æ72 28Æ76 ± 0Æ63 29Æ09 ± 0Æ65 27Æ76 ± 1Æ52 29Æ13 ± 0Æ84

after treatment 28Æ87 ± 0Æ63 28Æ60 ± 1Æ08 26Æ54 ± 1Æ55 28Æ08 ± 1Æ07
ABE (mmol l) before treatment 1Æ95 ± 0Æ55 1Æ47 ± 0Æ66 2Æ03 ± 0Æ56 0Æ25 ± 0Æ60 0Æ87 ± 0Æ62

after treatment 1Æ64 ± 0Æ34 1Æ81 ± 0Æ90 0Æ12 ± 0Æ30 1Æ00 ± 0Æ79
SBE (mmol l) before treatment 2Æ21 ± 0Æ57 2Æ90 ± 0Æ56 2Æ78 ± 0Æ63 1Æ04 ± 0Æ58 2Æ30 ± 0Æ64

after treatment 2Æ12 ± 0Æ42 2Æ65 ± 0Æ99 0Æ88 ± 0Æ54 2Æ10 ± 0Æ89
SBC (mmol l) before treatment 25Æ11 ± 0Æ46 24Æ83 ± 0Æ62 24Æ92 ± 0Æ56 24Æ80 ± 0Æ74 24Æ94 ± 0Æ59

after treatment 24Æ41 ± 0Æ30 24Æ33 ± 1Æ11 24Æ83 ± 0Æ62 24Æ31 ± 1Æ12

aSignificant differences from control group.
bSignificant differences after treatment.
p50 act, blood pO2 under its 50% saturation by O2 as determined at actual pH, pCO2 and temperature; p50 stand, p50 at 37�C, pH 7Æ4 and
pCO2 = 40 mmHg.
MetHb, methaemoglobin; HCO3

), plasma concentration of hydrocarbonates; TCO2, concentration of total carbon dioxide; ABE, the actual excess of
buffer bases; SBE, standard excess of buffer bases; SBC, standard hydrocarbonate.
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affinity (Fig. 1), actual p50 was elevated by 6Æ0% and standard

p50 – by 6Æ1% in comparison with the initial values (P<0Æ05).

However, the low values for pO2 and high pCO2 level and low

blood pH values remained unchanged (Table 3), which indicate

an imbalance between oxygen requirements and it supply to

myocardium. Consequently, the atenolol and enalapril applica-

tion did not completely compensate hypoxia in hypertensive

patients.

Thus, the 2-week intake of atenolol and enalapril contributed

to some improvement of NO synthesis, but only in grade II

hypertensive patients. This treatment was, however, insufficient

to correct the abnormalities found, which was confirmed by

other authors (Erzen et al., 2006). Higashi et al. (2002) also

found an improvement in endothelial function after the

application of angiotensin-converting enzyme inhibitor in mild

hypertension and inefficiency of this treatment in severe

hypertension.

Nebivolol and enalapril treatment raised nitrite ⁄ nitrate level by

39Æ3% (P < 0Æ01) in grade II hypertensive patients, and by 38Æ5%

(P < 0Æ01) in grade III hypertensive patients. The endothelium-

dependent vasodilatation was significantly improved in both

examined groups (P < 0Æ05), especially in grade II hypertensive

patients (the forearm blood flow to reactive hyperemia reach the

control values). The endothelium-independent vasodilatation did

not change in all the studied groups (Table 2).

The application of nebivolol in grade II hypertensive patients

(Group III) improved oxygen supply, pO2 (P < 0Æ05) was

increased and pCO2 diminished (P < 0Æ05) (Table 3). Nebivolol

reduced the manifestations of hypoxia in patients of Group IV

[pCO2 was decreased (P < 0Æ05)], however, the pO2 was not

significantly changed. To a greater extent, the p50 changes

depended on its initial level. In grade II hypertensive patients,

the actual p50 remained unchanged and the standard p50

decreased by 6Æ3% (P < 0Æ05). Under the influence of nebiv-

olol, grade III hypertensive patients showed by 9Æ2% increased

actual p50 (P < 0Æ05) (Fig. 2) and by 8Æ3% increased standard

p50 (P < 0Æ05), i.e. nebivolol normalized haemoglobin-oxygen

affinity.

Thus, the 2 week intake of nebivolol improved endothelial

function, increased NO synthesis and acted positively on blood

oxygen transport indices.

Discussion

The beneficial effect of nebivolol on blood oxygen transport

indices can be explained by an enhanced NO synthesis which

can change haemoglobin-oxygen affinity (Zinchuk et al., 2004).

As a result, blood oxygen indices can affect the activity of the

L-arginine-NO system. The NO formation is an oxygen-

dependent process (Cannon, 1998). Oxygen is one of the

essential substrates for NO synthesis and can play a limiting role

for NO formation (Shaul et al., 1995). Hypoxia can modify the

activity of NO-synthase (Shaul et al., 1993). When pO2 is less

than 30 mmHg, the enzymatic synthesis of NO decreases

(Kourembanas et al., 1998).

Earlier, experimental studies in vitro and in vivo showed that

nebivolol had a vasodilatatory effect due to its stimulation of NO

production (Cockroft et al., 1995; Paranti et al., 2000). Some

authors show that nebivolol improved endothelium-dependent

vasodilatation in healthy subjects and hypertensive patients

(Cockroft et al., 1995; Dawes et al., 1999). However, these

studies employed single intraarterial administration and disre-

garded the extent of hypertension severity. For clinical practice,

it is important to find whether this drug would produce a

similar effect after a per os intake. Some investigations

demonstrated that peroral nebivolol intake improved the

vasodilatatory function of the endothelium (Tzemos et al.,

2001; Arosio et al., 2002; Ugrekhelidze et al., 2006). The results

of our investigation demonstrate that nebivolol improved the

endothelial vasodilating function and raised the blood plasma

nitrite ⁄ nitrate levels not only at early stages of the disease but

also in severe hypertension.
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Figure 1 Actual oxyhaemoglobin dissociation curves: control (D),
atenolol before treatment ( ), atenolol after treatment (r).
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Figure 2 Actual oxyhaemoglobin dissociation curves: control (D),
nebivolol before treatment ( ), nebivolol after treatment (r).
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It is known that the lowest concentration of nebivolol elevates

p50 values by 4Æ3 + 0Æ8 mmHg at actual pH and CO2. And the

subsequent 2-and 3-fold increases in nebivolol concentration

raised p50 value by 7Æ5 ± 1Æ1 mmHg (P < 0Æ01) and

10Æ6 ± 0Æ7 mmHg (P < 0Æ01), respectively, which demon-

strates a dose-dependent effect of the drug (Zinchuk & Zinchuk,

2007). Nitric oxide can be an allosteric effector of haemoglobin,

increasing or decreasing its oxygen affinity – probably, through

the generation of different NO-Hb derivatives (changes in

haemoglobin-oxygen affinity in experiments in vitro with various

ratios between the NO and the haemoglobin and varying

oxygen pressures) (Stepuro & Zinchuk, 2006).

Historically, red blood cells have been considered as

transporters of oxygen and carbon dioxide, with the uptake of

one and subsequent release of the other. With the advent of the

field of NO biology, red blood cells also were thought to be

scavengers of NO that could effectively suppress its bioactivity

(Angelo et al., 2006). Therefore, not only the interaction of

haemoglobin with oxygen, but also that with NO should be

taken into account. NO has much higher affinity for the

deoxyhaemoglobin haeme group compared to oxygen and

carbon dioxide, which suggests its competition with oxygen for

the corresponding sites of partially oxygenated haemoglobin

(Gladwin et al., 2000).Therefore, blood flow deficiency and

impaired oxygen transport to tissues are important factors

controlling NO formation in the body (Zinchuk et al., 2004).

Haemoglobin-oxygen affinity, regulating NO level, can con-

tribute to the equilibrium between NO and oxygen in the

vascular network. On the other hand, the endothelium can be

involved in formation of these impairments because only NO

synthesized in sufficient amounts can maintain normal blood

flow and oxygen transport to tissues. Endothelial dysfunction

impairs formation of different haemoglobin NO-derivatives,

that influence not only the release of NO at different sites of the

vascular bed, but also on haemoglobin-oxygen affinity, and

accordingly, on optimal blood oxygenation in capillaries of

pulmonary circulation and its deoxygenation in capillaries of

systemic circulation.

Three main NO-derivatives of haemoglobin are known. There

are nitrosylhaemoglobin, nitrosohaemoglobin and methaemo-

globin (Gladwin et al., 2000). However, their functions are not

fully established yet. NO interacts with oxyhaemoglobin to

produce methaemoglobin and nitrates, and while interacting

with deoxyhaemoglobin, NO forms nitrosohaemoglobin, which

is desintegrated to haemoglobin and nitrite in the presence of

oxygen (Kosaka, 1999; Gladwine et al., 2003). About 70% of

endogenous NO is metabolized to nitrates and nitrites (Kelm,

1999; Kato et al., 2004). Various haemoglobin NO-derivatives

are known to affect whole blood haemoglobin-oxygen affinity

in various ways (Kosaka, 1999), which may be of significant

importance for gaseous exchange (Zinchuk & Dorokhina,

2002). The presence of different haemoglobin compounds

containing NO can affect the haemoglobin-oxygen affinity

in different ways. Methaemoglobin and nitrosohaemoglo-

bin increase the haemoglobin-oxygen affinity, whereas

nitrosylhaemoglobin decreases it. The oxygen-dependent nature

of the equilibrium between nitrosylhaemoglobin and nitroso-

haemoglobin provides a balance between the blood flow and its

requirements, i.e. an optimal balance between hypoxic vasodi-

latation and hyperoxic vasoconstriction. In arterioles and

capillaries, erythrocytes sequestrate NO, reducing its participa-

tion in vasodilatation and forming blood oxygen transport

indices (Zinchuk et al., 2004).

As it is known, the vascular endothelium is heterogenous in

its NO-forming function and its influences on haemoglobin-

oxygen affinity. It was found that the basal level of NO

production in arteries is higher than that in veins (Moncada

et al., 1991). Immunological studies show that more NO is

synthesized in small blood vessels than in large blood vessels

(Kelm & Rath, 2001). Thus, haemoglobin maintains a definite

plasma pO2 level and contributes to adequate supply of oxygen

to tissues. Therefore the mechanisms of oxygen transport and

blood oxygen-binding properties can regulate the activity of the

L-arginine-NO pathway (Zinchuk et al., 2004). The normal basal

NO production by endotheliocytes plays a very important role

in the mechanisms of coronary blood flow autoregulation, in

the phenomenon of �escaping� the pressing effect of angioten-

sine II and in the reaction of reactive hyperemia of vessels

(Hermann et al., 2006; Spieker et al., 2006). The enhanced

production of vascular NO has great adaptive significance since

it does not only improve tissue perfusion, but also inhibits

thrombocytes adhesion and their aggregation.

Impairment of the endothelial NO-synthase function to a

great extent stipulates loss of control over the vascular tone,

resulting in a decrease of adequate oxygen supply to tissues by

blood flow. It has been proven that severe hypoxia provokes

constriction of different vessels, including coronary arteries.

This is more likely to be due to transitional inhibition of basal

NO secretion rather than to production of endothelium-

dependent vasoconstrictors (Mehta, 1995). Acute and chronic

hypoxia in experiment disturbs NO production not only in

coronary, but also in pulmonary arteries.

A specific defect of the endothelial NO-producing system,

proatherogenic and vasospastic effects of endothelial dysfunc-

tion and an impaired blood oxygen function may contribute to

development of cardiovascular complications related to elevated

arterial pressure. Acting against the pathological processes

causing the development of endothelial dysfunction and

hypoxia will improve the outcome in patients with arterial

hypertension. Therefore, further investigations of the mecha-

nisms of development of the endothelial dysfunction in case of

arterial hypertension and search for a possible correction of

these impairments still remain to be discussed.

Thus, the results of our study indicate significant disturbances

of blood oxygen transport indices in hypertensive patients with

endothelial dysfunction. Treatment of hypertensive patients

with nebivolol corrects the blood oxygen transport indices,

stimulates NO production and improves endothelium-depen-

dent dilatation. Normalization of blood oxygen transport indices

may regulate the activity of the L-arginine-NO pathway. Thus,
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nebivolol may improve efficiency of the treatment of hyper-

tension.
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