ВЛИЯНИЕ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ С ФОТОСЕНСИБИЛИЗАТОРАМИ РОДАМИНОМ И НИЛЬСКИМ СИНИМ НА МИКРОФЛОРУ ОСТРОГО ПЕРИТО-НИТА IN VIVO

Пулатова З.Б., Рахманова М.Б., Русина А.В. Гродненский государственный медицинский университет, Беларусь Вторая кафедра хирургических болезней Гродненский областной клинический перинатальный центр, Беларусь Научный руководитель – канд. мед. наук Русин В.И.

В настоящее время острый перитонит считается одним из наиболее опасных осложнений заболеваний органов брюшной полости, которое характеризуется высокой летальностью и в силу этого является крайне значимой и сложной проблемой в неотложной хирургии [1]. Фотосенсибилизаторы способны селективно накапливаться в микробных клетках, которые являются объектом для фотодинамического воздействия. Именно поэтому фотодинамическая терапия многими исследователями рассматривается как альтернатива традиционной антибиотикотерапии гнойной инфекции [2, 3].

Цель исследования. В данной работе изучали влияние фотодинамической терапии с применением красного лазера и фотосенсибилизаторов родамина и нильского синего на микрофлору острого экспериментального перитонита in vivo.

Материалы и методы. Исследование проведено на 24 беспородных белых крысах (самцы массой 150-200 г). В качестве основного контроля использовали животных с моделированным острым перитонитом (1 группа - 6 крыс). Кроме этого группе из 6 животных после моделирования острого перитонита проводили срединную лапаротомию и последующую санацию физраствором (2 группа). Группе из 6 животных через 3 часа после моделирования перитонита проводили санацию физраствором и сеанс фотодинамической терапии с красным лазером и фотосенсибилизатором родамином (3 группа). Группе из 6 животных через 3 часа после моделирования перитонита проводили санацию физраствором и сеанс фотодинамической терапии с красным лазером и фотосенсибилизатором нильским синим (4 группа). Для определения микробного обсеменения брюшной полости готовили смывы из неё после выведения животных из эксперимента.

Результаты. Статистически значимый эффект угнетения роста микрофлоры экспериментального перитонита наблюдается при проведении сеансов фотодинамической терапии in vivo с использованием лазерного излучения красного спектрального диапазона (λ =0,67 мкм) в дозе 0,4 Дж/см² и 0,1% спиртовыми растворами обоих изучаемых фотосенсибилизаторов. Больше статистически значимый антимикробный эффект выражен у фотосенсибилизатора родамин.

Выводы. Фотодинамическая терапия с лазерным излучением красного спектра (λ =0,67 мкм, W=0,4 Дж/см²) и растворами родамина и нильского синего способствовала уменьшению обсеменённости брюшной полости на фоне перитонита. Это свидетельствует о возможности эффективного применения данной методики для лечения острого перитонита.

Литература:

- 1. Имунологические аспекты экспериментального распространённого гнойного перитонита / В. . Гостищев [и др.] // Новости хирургии. 2011. Т. 19, № 5. С.3-8.
- 2. Костюченко, К. В. Возможности хирургического лечения распространённого перитонита / К. В. Костюченко // Вестн. хирургии им. И. И. Грекова. 2004. Т. 163, №3. С. 40-43.
- 3. Hamblin, M. R. Photodynamic therapy: a new antimicrobial approach to infectious disease? / M. R. Hamblin, T. Hasan // Photochem. Photobiol.Sci. 2004. Vol. 3, № 5. P.436-450.