КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА РАСТВОРЕНИЯ ТВЕРДЫХ ДЖЕНЕРИКОВ В ЖИДКОСТЯХ

Шелепова Е. А., Бертель А. И., Ольховик А. А. Гродненский государственный медицинский университет, Беларусь Кафедра медицинской и биологической физики Научный руководитель – канд. физ.-мат. наук, доцент Клинцевич С.И.

Актуальность данной работы заключается в том, что в настоящее время многие лекарственные средства на мировом фармацевтическом рынке являются дженерическими препаратами. Дженерики имеют качественный и количественный состав активных субстанций такой, как и в патентованных лекарственных средствах. Различие заключается в составе неактивных, вспомогательных ингредиентах. Кроме того, различие могут наблюдаться в технологиях производств дженериков. Таким образом, препараты-дженерики могут отличаться от оригинального препарата эффективностью и безопасностью. Для обоснованного заключения о качестве, эффективности и безопасности дженерических препаратов проводятся их исследования на биоэквивалентность[1, 2].

Одним способов определения биоэквивалентности препаратов является исследование сравнительной кинетики их растворимости in vitro. Для изучения механизма кинетики растворения лекарственных форм важное значение имеют математические модели.

Целью данной работы является разработка простой и наглядной математической модели кинетики растворения твердых дженериков.

Для достижения этой цели нами были сформулированы и решались следующие задачи:

- 1. Создание математической модели кинетики растворения твердой формы препаратадженерика. На данном этапе нами ставилась задача получить математические уравнения, которые являются наглядными и понятными для студентов-медиков, изучающих в вузе лишь элементы высшей математики.
- 2. Проектирование разностного алгоритма решения системы дифференциальных уравнений и его адаптация к среде компьютерной математики MathCad.
 - 4. Численное решение разностных уравнений модели в среде MathCad.
 - 5. Анализ полученных результатов, поиск закономерностей и обобщений.

Результаты. При разработке математической модели нами использовались следующие исходные предположения: в растворителе одновременно присутствуют твердое, не растворившееся вещество массой F и уже растворенное вещество массой L. Кроме того, мы использовали следующие упрощения: 1) скорость, с которой убывает растворенное вещество L, прямо пропорциональна наличному количеству вещества; 2) скорость растворения твердого вещества F пропорциональна наличному количеству вещества в некоторой степени а; 3) скорость растворения пропорциональна разности (Lmax-L), где Lmax — максимальная растворимость вещества в данной жидкости. Предлагаемая модель описывается системой простых дифференциальных уравнений. Для численного решения системы дифференциальных уравнений нами использовался классический метод Рунге-Кутта. Алгоритм данного метода спроектирован нами в среде пакета MathCad.

Выводы. Полученные решения наглядно иллюстрируются соответствующими графиками. Разработанная нами модель позволяет изучать кинетику растворения твердой формы лекарственного препарата в жидкости, получать в наглядной форме профили растворения. Данная модель может быть использована как в учебных целях, так и в качестве базиса для создания более адекватных кинетических моделей процесса растворения дженериков.

Литература:

- 1. Киселева, Г. С. Биоэквивалентность и качество лекарственных средств/Г. С. Киселева // Провизор. 1998. -№ 4. -С. 43-44.
- 2. Арзамасцев, А. П. Эквивалентность воспроизведенных лекарственных средств: фармацевтические аспекты/ А. П. Арзамасцев, В. Л. Дорофеев // Ведомости НЦЭСМП. М., 2007. №1. -С. 6-11.