- 2. Целесообразно рассмотреть вопрос о разработке механизма принудительного лечения несовершеннолетних пациентов с синдромом зависимости к ПАВ.
- 3. Внести изменения и дополнения в постановление Министерства здравоохранения Республики Беларусь от 1 августа 2003 г. № 38 «Об утверждении Инструкции о порядке выявления, учета, обследования и лечения несовершеннолетних, употребляющих спиртные напитки, наркотические средства, психотропные либо иные одурманивающие вещества и Положение о подростковом наркологическом кабинете».

Объедков И. В., Скугаревский О.А., Скугаревская М.М.

Белорусский государственный медицинский университет, Минск, Беларусь

КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ХАРАКТЕРИСТИК ПРОИЗВОЛЬНЫХ САККАД ПРИ ШИЗОФРЕНИИ

В статье рассматривается вопрос о возможной связи тонкой моторики глаз с симптомами шизофрении.

I. V. Obedkov, O.A. Skugarevsky, M.M. Skugarevskaya Belarusian State Medical University, Minsk, Belarus

CLINICAL SIGNIFICANCE OF CHARACTERISTICS OF ARBITRARY SACCADES IN SCHIZOFRENIA

The article deals with the possible connection of fine eye motility with symptoms of schizophrenia.

Диагностика шизофрении целиком опирается на клинико-психопатологический метод. Ни один из лабораторных и аппаратных методов не доказал специфичности в отношении этого заболевания. В настоящем исследовании были поставлена задача выявить взаимосвязь отдельных симптомов шизофрении с параметрами горизонтальных рефлексивных саккад и найти им теоретическое обоснование. Для этого анализировали достоверность различий временных показателей саккад пациентов с шизофренией и здоровых лиц и исследовали корреляционную связь отдельных симптомов шизофрении с показателями саккад.

Материалы и методы. Основная группа состояла из 198 пациентов (93 мужчины и 105 женщин) с параноидной шизофренией в соответствии

с критериями Классификации психических и поведенческих расстройств 10 пересмотра. Контрольная группа состояла из 61 психически здоровых лиц (30 мужчин и 31 женщина). Клиническая диагностика проводилась с применением шкал SANS (Scale for the Assessment of Negative Symptoms) и SAPS (Scale for the Assessment of Positive Symptoms). Для исследований окуломоторных реакций проводили тест саккад. Для исследований окуломоторных реакций проводили тест саккад. Использовался видеонистагмограф с комплексом для регистрации и графопостроения, производитель Otometrics (Дания). Регистрирующая система VNG, Otometrics оборудована скоростными видеокамерами. Тест саккад позволяет оценить латентность, то есть время реакции, измеренное между изменением позиции цели и превышением порога в миллисекундах, скорость в градусах в секунду (°/с) и точность саккадических движений глаз в %. Латентность определяется по времени между моментом изменения позиции цели и начала саккады. Скорость понимается буквально как скорость движения глаза во время саккады. Точность показывает, насколько правильно выполняется саккада. Точность вычисляется автоматически в соответствии с алгоритмом:

$$P = (X_2 - X_0) / (X_3 - X_0) * 100\%,$$

где значение около 100% указывает на оптимальную фиксацию на цели, значение меньше 100% говорит о слишком малой амплитуде саккады (недобор), значение больше 100% говорит о слишком большой амплитуде саккады (перебор).

Регистрация параметров саккад проводилась в течение 100 циклов (около 10 минут) после начала зрительной стимуляции при использовании сигнала с постоянной скоростью 15°, затем при использовании сигнала с постоянно изменяющейся скоростью (рандомный сигнал 10°,15°,30°/с). Полученные результаты представляли собой интегративный показатель горизонтальных просаккад (то есть вызванных специальным видеосигналом) обоих глаз [1].

Результаты и обсуждение. Средняя скорость саккад (μ) для групп при движении стимула влево составила 449,5 °/с и вправо 451,5 °/с, что соответствует нормальным физиологическим значениям (для постоянной скорости сигнала F 0,75; p>0,05 вправо и F 1,37 влево; p>0,05; и для рандомного сигнала F0,11; p>0,05 вправо и F 1,37 влево; p>0,05). Среднее значение **латентности саккад** при движении глаз влево составило при постоянной и рандомной скорости стимула 284±5 мс влево и 286±5 мс вправо. При постоянном сигнале имелась связь средней силы между апатией-абулией и ангедонией — асоциальностью с **точносью саккад**.

Латентность саккад не зависела от характера сигнала и имела относительно высокую корреляционную связь с апатией-абулией и ангедонией – асоциальностью по шкале SANS. Факт независимости от сигнала указывает на один из механизмов саккад, одновременно имеющий отношение к симптомам апатии-абулии и ангедонии – асоциальности. Локализация нарушений мозга, описанных при шизофрении, пересекается с четвертым уровнем контроля саккадических движений глаз. Он включает в себя корковые структуры, в частности, центр произвольных движений глаз (восьмое поле Бродмана). Полученные нами результаты свидетельствуют также об общих механизмах апапия-абулии и ангедонии-асоциальности в клинической структуре шизофрении с одной стороны, с точностью саккад вне зависимости от сложности зрительного восприятия с другой. Известно существование механизмов упорядочения движения глаз, изначально генерируемого из ствола головного мозга генератором саккад [2, 3]. Этот первичный поток нейронных импульсов, в итоге приводящий к движениям глазных яблок, нуждается в тонких настройках для обеспечения точности слежения за объектом. Речь идет о сложно организованной иерархической системе глазодвигательного контроля, в которой лобные отделы мозга играют одну из ключевых ролей. При этом важно иметь ввиду, что генерация саккад происходит не только в связи с необходимостью слежения за целью, но и в соответствии с внутренними представлениями («презентациями» в терминах когнитивной психологии), которые при шизофрении грубо нарушены. Поиск теоретических основ обнаруженного нами усиления корелляционной связи симптомов шизофрении с точностью саккадических движений глаз привел к следующим размышлениям. Точность саккад контролируется системой головного мозга, называемой мозговым детектором ошибок. Эта система использует 2 разных контрольных механизма выявления и коррекции ошибок произвольных движений глаз. Первый «он-лайновый» механизм контроля по каналу обратной связи используется для уменьшения величины ошибки в ходе выполнения саккадных движений. Второй механизм предполагает создание в глазодвигательных структурах мозга моторной программы предстоящего движения глаз ее эфферентной копии, отсылаемой для хранения в структуры стволового генератора саккад [4,5].

Сопоставив полученные результаты с литературными данными пришли к выводам:

1. Апапия-абулия и ангедония-асоциальность в клинической структуре шизофрении имеют сопряженную связь с латентностью саккадических движений глаз вне зависимости от сложности зрительного восприятия, что свидетельствует об общих структурно-функциональных

механизмах возникновения этих феноменов, наиболее вероятно связанных с базовой гипофронтальностью головного мозга пациентов. Возможно, причинность этого явления находится в плоскости анатомо-функциональной дисфункции фронто-стриарной системы при шизофрении, ответственной за когнитивный контроль окуломоторики.

- 2. Апапия-абулия и ангедония-асоциальность в клинической структуре шизофрении имеют сопряженную связь с точностью саккадических движений глаз вне зависимости от сложности зрительного восприятия, что свидетельствует об общих структурно-функциональных механизмах возникновения этих феноменов, наиболее вероятно связанных с гипофронтальностью головного мозга и нарушением активности дофаминовой системы пациентов.
- 3. Усиления статистической связи точности саккад с симптомами шизофрении при усложнении сигнала отражает функционально слабое состояние мозгового детектора ошибок при этом расстройстве, являющегося универсальным механизмом обеспечения целостности психической деятельности.

Литература:

- 1. McCaslin DL, Jacobson GP. Current Role of The Videonystagmography Examination in the Context of the Multidimensional Balance Function Test Battery. Seminars in Hearing 2009; 30: 242-253
- 2. Picard HJ, Amado I, Bourdel MC, Landgraf S, Olié JP, Krebs MO. Correlates between neurological soft signs and saccadic parameters in schizophrenia. *Prog Neuropsychopharmacol Biol Psychiatry*. 2009;33(4):676–681.
- 3. Кубарко А.И. Обнаружение и коррекция ошибочных движений глаз мозговым детектором ошибок при слежении за перемещающимся объектом // Физиология человека, 2012, том 38, № 2. С. 23-30
- 4. Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr Bull.-1978;4:636-40.
- 5. Ford JM, Roach BJ, Mathalon DH. How to assess the corollary discharge in humans using non-invasive neurophysiological methods. Nature Protocols 2010;5:1160-8.
- 6. Ford JM, Mathalon DH, Heinks T et al. Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. Am J Psychiatry 2001;158:2069-71.