
559Журнал Гродненского  государственного медицинского университета, том 23, № 6, 2025   

УДК 612.824:616.831-002				    doi:10.25298/2221-8785-2025-23-6-559-564
БАРЬЕРНЫЕ СТРУКТУРЫ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ  

ЧАСТЬ 1: ФУНКЦИИ И ПРОНИЦАЕМОСТЬ
С. В. Виноградов 

Гродненский государственный медицинский университет, Гродно, Беларусь
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Нейроваскулярная единица и защитные  
барьеры центральной нервной системы
Первое предположение о существовании 

некой структуры, защищающей центральную 
нервную систему (ЦНС) от воздействия веществ, 
циркулирующих в крови, высказал P. Ehrlich  
в восьмидесятые годы XIX века, когда отметил, 
что после внутривенного введения трипановый 
синий краситель обнаруживался в различных 
тканях, кроме мозга [1].

В 90-е годы прошлого века в литературе появи-
лось понятие нейроваскулярной единицы (НВЕ), 
которая включает в себя эндотелий микрососудов 
мозга, перициты, периваскулярные астроциты, 
другие глиальные клетки, нейроны и внеклеточ-
ный матрикс. Сложная функциональная взаимо- 
связь между структурами НВЕ обеспечивает не-
прерывное, строго зависящее от метаболической 

Рисунок 1 – Нейроваскулярная единица (адаптировано из [5])  
Примечания – 1 – кровь, 2 – спинномозговая жидкость,  

3 – паренхима мозга, 4 – гематоликворный барьер, 5 – вентрикулярный 
барьер, 6 – гематоэнцефалический барьер, 7 – эндотелиоциты  

капилляров, 8 – клетки хориоидного сплетения, 9 – эпендимальные 
клетки, 10 – плотные контакты, 11 – астроциты, 12 – нейрон,  

13 – подоциты, 14 – пространства Вирхова-Робина 
Figure 1. Neurovascular unit (adapted from [5])  
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активности, поступление к мозгу энергетическо-
го субстрата (глюкозы), кислорода и выведение 
продуктов метаболизма. На уровне НВЕ проис-
ходят все межклеточные взаимодействия в мозге. 
Например, активированные нейроны выделяют 
глутамат и калий, которые поглощаются астро-
цитами, они вырабатывают лактат, который ис-
пользуется нейрональными клетками в качестве 
энергетического субстрата или эндотелиальными 
клетками для контроля кровотока и целостности 
гематоэнцефалического барьера (ГЭБ) [2, 3, 4]. 
Таким образом, НВЕ можно рассматривать как 
саморегулирующийся компартмент в мозговой 
ткани, способный поддерживать собственный 
гомеостаз, и в котором реализуются почти все 
основные нейробиологические и пластические 
процессы: нейрональная возбудимость, метабо-
лическое взаимодействие нейронов и астроцитов, 

глиоваскулярный контроль, иммунное 
распознавание, нейрогенез / глиогенез. 
Схематично НВЕ представлена на ри-
сунке 1.

Зачастую, обсуждая структуру от-
вечающую за гомеостаз ЦНС, говорят 
о ГЭБ, который является лишь частью 
барьерных структур, поддерживающих 
постоянство внутренней среды ЦНС.  
В поддержании гомеостаза ЦНС также 
участвуют гематоликворный (ГЛБ) и 
вентрикулярный барьеры (ВБ). 

Гематоэнцефалический барьер
Основными структурными еди-

ницами ГЭБ являются клетки эндо-
телия микрососудов и контактирую-
щие клетки (перициты и астроциты).  
Клетки эндотелия микрососудов 
связаны между собой посредством 
плотных контактов, представленных 
адгезионными белками клаудином и 
оклюдином, контролирующими меж-
клеточный транспорт ионизирован-
ных веществ. Наряду с межклеточным 
существует также трансцеллюлярный 
транспорт веществ, который происхо-
дит посредством:

• диффузии по градиенту концен-
трации (Н2О, СО2, О2);
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• транспорта с помощью белков-переносчи-
ков (глюкоза, аминокислоты, глутатион, белки 
малого размера);

• рецептор-опосредованного эндоцитоза 
(крупные белковые молекулы в том числе транс-
портные белки, инсулин), который является 
АТФ-зависимым;

• эффлюксных АТФ-зависимых насосов, ко-
торые представляют собой фиксированные на 
мембране нейронов АВС-транспортеры (ATP-
Binding Cassette), которые выводят из клеток 
ЦНС продукты метаболизма, лекарственные 
препараты и обусловливают неспецифическую 
лекарственную устойчивость, в том числе анти-
биотикорезистентность [6].

Целостность ГЭБ определяется функциональ-
ной активностью клеток эндотелия микрососу-
дов. Перициты и периваскулярные астроциты по-
крывают слой эндотелиальных клеток и обеспе-
чивают регуляцию их проницаемости [3, 4, 7, 8].

Гематоликворный барьер
Существование зон головного мозга с повы-

шенной проницаемостью для экзогенных ве-
ществ впервые установил Шульман в 1912 году, 
когда обнаружил окрашивание нейрогипофиза 
лабораторных мышей трипановым синим, вве-
денным внутривенно [9]. Вследствие того, что 
окрашенные зоны локализуются вокруг боко-
вых желудочков мозга, они были названы цир-
кумвентрикулярной системой. Данную систему 
также называют «воротами в мозг» [10]. Повы-
шенная проницаемость циркумвентрикулярной 
системы обусловлена особенностями строения 
сосудистого сплетения (choroid plexus), а так-
же образующих его эндотелиальных клеток моз-
говых капилляров и клеток эпендимы. Стенка 
мозговых капилляров в данной зоне значительно 
фенестрирована. Вещества из кровотока выходят 
через фенестры и контактируют с эпендимальны-
ми клетками, выстилающими желудочки мозга, 
соединенными между собой посредством плот-
ных контактов. Кроме того, клетки сосудистого 
сплетения содержат на своей поверхности мно-
жество специфических рецепторов, транспорте-
ров, ионных каналов, позволяющих передавать 
гуморальные сигналы, транспортировать биоло-
гически активные молекулы, ионы, метаболиты, 
токсины между кровью и цереброспинальной 
жидкостью [11]. Сосудистое сплетение взрос-
лого человека продуцирует до 500 мл ликвора 
в сутки [12]. Благодаря ресничкам на поверхно-
сти эпендимальных клеток происходит цирку-
ляция ликвора по желудочковой системе [13].  
Цилиарный гипокинез под воздействием токси-
ческих веществ, например алкоголя, ведет к ги-
дроцефалии [14]. При нейровоспалении из повре-
жденных клеток выделяется большое количество 
АТФ, который, воздействуя на рецепторы А2В, 
стимулирует частоту колебаний ресничек и тем 
самым влияет на динамику ликвора. По площади 
ГЛБ в 5000 раз меньше ГЭБ [15].

Вентрикулярный барьер 
Функцию ВБ выполняют эпендимальные 

клетки, связанные между собой посредством 

плотных контактов. Поэтому ВБ обладает высо-
кой межклеточной проницаемостью [5].

Совокупность данных барьерных структур за-
щищает ЦНС от проникновения в нее нейроток-
сических веществ из крови. К таким веществам 
относятся хемо- и цитокины. Однако в барьер-
ных структурах ЦНС присутствуют транспорт-
ные механизмы для дозированного поступления 
определенных цитокинов в ЦНС. Вероятно, это 
необходимо для оперативного обмена инфор-
мацией между иммунной и нервной системами. 
Так, Yarlagadda A. и соавт. указывают на повы-
шенную проницаемость барьерных структур во-
круг циркумвентрикулярной системы для TNF-α 
и других цитокинов [16].

Проницаемость барьерных структур  
центральной нервной системы

Проницаемость барьерных структур ЦНС не 
является постоянной величиной. Она различна 
во время сна и бодрствования, зависит от сте-
пени мозговой активности, возраста. Так в ходе 
постнатального развития барьерные механизмы 
динамически модулируются для обеспечения 
необходимой микросреды для развивающегося  
мозга [17]. Поглощение аминокислот мозгом 
высоко у новорожденных, чтобы удовлетворить 
более высокие потребности в питании развиваю-
щегося мозга, а затем снижается к взрослому воз-
расту [18]. 

Повышение проницаемости ГЭБ может про-
исходить несколькими, зачастую независимыми 
друг от друга путями: посредством пара- транс-
целлюлярного транспорта, вследствие активи-
зации кавеолярного переноса в небольших арте-
риолах головного мозга. В микрокапиллярах же  
головного мозга кавеоллярный перенос отсут-
ствует [19]. Определенный вклад в изменение 
проницаемости ГЭБ вносят перициты – клетки, 
располагающиеся по оси мозговых капилляров, 
непосредственно контактирующие с эндотели-
альными клетками. Перициты влияют на сосуди-
стый тонус, передавая нервный импульс с нейро-
на на эндотелиоцит [20]. Управление проницае-
мостью барьерных структур ЦНС осуществляют 
также астроциты, влияющие на формирование 
плотных контактов между эндотелиоцитами и их 
пропускную способность [21]. Помимо этого, воз-
действуя на аквапорины AQP4, астроциты влия-
ют на степень гидратации мозга [22]. Астроциты 
выполняют нейрон-астроглиальное метаболиче-
ское сопряжение, влияя на экспрессию транспор-
теров глюкозы [23]. Нейроны, входящие в состав  
НВЕ, иннервируя мозговые капилляры, влияют 
на их тонус и проницаемость барьерных структур 
ЦНС [24].

Критерием степени проницаемости барьер-
ных структур ЦНС может быть общий белок (ОБ) 
спинномозговой жидкости (ЦСЖ). В норме кон-
центрация общего белка в ликворе минимальна 
и составляет 0,1–0,2% от концентрации в плазме 
крови. Уровень ОБ в ЦСЖ более 1,5 г/л специфи-
чен для бактериального менингита и свидетель-
ствует о повышении проницаемости барьеров 
ЦНС. Менее значительное повышение ОБ ликво-
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ра наблюдается при вирусных менингоэнце-
фалитах, субарахноидальных кровоизлияниях, 
опухолях головного мозга. Степень нарушения 
целостности барьеров ЦНС можно оценить по 
альбуминовому индексу, который в норме со-
ставляет менее 9 единиц: АльбуминЦСЖ/Аль-
буминплазмы×100 [6].

Поиск способов и путей доставки лекарствен-
ных препаратов в ЦНС, минуя барьерные струк-
туры, является темой многих исследований.  
Так, А. Е. Шариф и соавторы отмечают повыше-
ние проницаемости ГЭБ под воздействием гром-
кого звука [25]. 

Ученые из Пенсильванского университета 
обнаружили, что проницаемость ГЭБ для ксено-
биотиков выше ночью. Моделируя эпилепсию  
у мушек дрозофил, было получено более быстрое 
купирование приступов при введении противо- 
эпилептического препарата в ночное время [26].

В эксперименте С. В. Воробьева показано 
значимое повышение проницаемости ГЭБ для 
антибактериальных препаратов после внутрисо-
судистого лазерного облучения крови. Причем 
коэффициент проницаемости рос значительно 
больше у препаратов, исходно практически не 
проникавших через ГЭБ или проникавших в не-
значительной степени. Наиболее значительный 
прирост концентрации в ткани мозга после сеанса 
внутривенного лазерного облучения крови пока-
зали цефазолин, цефотаксим, меропенем [27].

Согласно опубликованным A. M. Sonabend 
и соавторами результатам первой фазы кли-
нического исследования кратковременно по-
высить проницаемость ГЭБ можно с помо- 
щью имплантированного излучателя ультра- 
звука (рис. 2). После удаления глиобластомы па-
циентам внутривенно вводился цитостатический 
препарат паклитаксел в комбинации с внутривен-
ными микровезикулами (LIPU/MB). В результа-
те воздействия на кровь пациентов импульсным 
ультразвуком низкой интенсивности микрове-
зикулы схлопываются и, по предположению  

Рисунок 2 – Имплантируемое ультразвуковое  
устройство (фото: https://pmc.ncbi.nlm.nih.gov/articles/

PMC10256454/) 
Figure 2 – Implantable ultrasound device

авторов, выделяется большое количество энер-
гии. Это ведет к повышению проницаемости 
ГЭБ для паклитаксела. Достигнутый в клиниче-
ском испытании эффект повышения проницае-
мости ГЭБ был максимален сразу после ультра- 
звукового воздействия и снижался в течение часа.  
В исследовании на лабораторных животных 
длительность эффекта составляла 6 часов [28].

Как показало исследование [29], после од-
нократного интракаротидного введения озони-
рованного физиологического раствора с кон-
центрацией озона 0,7 мг/л крысам линии Wistar 
наблюдалось преходящее повышение проницае-
мости ГЭБ, которое нормализовывалось к 30-м 
суткам. При применении же озонированного фи-
зиологического раствора с концентрацией озона 
3,5 мг/л восстановления защитных свойств ГЭБ 
к 30-м суткам не наблюдалось.

В литературных источниках широко обсуж-
дается способность канабидиола – непсихоак-
тивного соединения, входящего в состав кана-
биса, влиять на проницаемость ГЭБ [30]. Так 
канабидиол может применяться в качестве «тро-
янского коня», повышая проницаемость ГЭБ для 
лекарственных препаратов [31].

В психиатрической практике отмечено вли-
яние электросудорожной терапии на проницае-
мость ГЭБ у пациентов с шизофренией [32].

Существенное влияние на проницаемость 
ГЭБ оказывает воспаление и, в частности, по-
вышение концентрации провоспалительных 
цитокинов. Так, по данным [33], IL-1β угнетает 
экспрессию окклюдина, а полифункциональный 
цитокин TGF-β1 подавляет экспрессию клауди-
на-5 – белков плотных контактов эндотелиаль-
ных клеток, что приводит к повышению пара-
клеточной проницаемости ГЭБ. Парацеллюляр-
ный транспорт через ГЭБ повышается также 
брадикинином, серотонином, гистамином, ара-
хидоновой кислотой [34]. Липополисахарид, 
воздействуя на белки плотных контактов, вызы-
вает их дисфункцию и даже апоптоз [35]. 

При развитии бактериального менингита, ме-
нингоэнцефалита весьма значимым фактором 
излечения становится создание адекватной кон-
центрации антибиотика в ЦСЖ. При системном 
назначении антибиотика далеко не всегда удает-
ся достичь эффективной подавляющей концен-
трации препарата в ЦСЖ, особенно в случаях, 
вызванных мульти- и панрезистентной микро-
флорой. Повышение дозы внутривенно вводи-
мого антибиотика до максимальной не всегда 
возможно ввиду развития токсических реакций. 
В 2-й части обзора обсуждается проницаемость 
барьерных структур ЦНС для отдельных групп 
антибактериальных препаратов, факторы ее 
определяющие, цитируются данные системати-
ческих обзоров и описания отдельных случаев 
интравентрикулярного (IVT) интратекального 
(ITT) применения антибиотиков.
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CENTRAL NERVOUS SYSTEM BARRIER STRUCTURES  
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The first part of the review discusses the physiology of the blood-brain barrier, its permeability under normal 
conditions and during inflammation. Sources describing methods for affecting the permeability of the blood-brain 
barrier are cited. 
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