- 3. Желательно быть уверенным в том, что поиск данных в медицинской литературе целесообразен. При наличии даже теоретической возможности проведения исследований значимость проблемы может быть настолько низкой, что ни один из исследователей не станет тратить время на ее решение.
- 4. Следует убедиться, что выбран оптимальный источник данных, в котором можно найти самый полный ответ на интересующий вопрос. При поиске ответа на частный, правильно сформулированный клинический вопрос лучше всего начинать с тех баз данных, в которые включаются только материалы, отвечающие определенным критериям методологического качества.

ИСПОЛЬЗОВАНИЕ РЕГРЕССИОННОГО АНАЛИЗА ДЛЯ РАСЧЕТА НОРМАЛЬНЫХ ВОЗРАСТНЫХ АНАТОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ

Волкова О.В.

Гродненский государственный медицинский университет, Беларусь Научный руководитель – к.м.н. Киселевский Ю.М.

Определение половозрастных нормативов размеров анатомических структур внутренних органов является одним из обязательных условий диагностики патологических изменений. В клинической практике для оценки анатомических параметров используются табличные или графические (номограммы) данные половозрастных нормативов. Сводные таблицы нормативов просты в использовании, но имеют ограничения, связанные с информационной перегруженностью при большом количестве определяемых показателей и дискретностью определяющих показателей. Номограммы лишены дискретности, но в большей степени увеличивают время оценки произведенных измерений. Решением проблемы может быть расчет должных величин с использованием регрессионных формул.

Цель исследования — определение регрессионных формул для расчета возрастных анатомических нормативов внутрисердечных структур.

Материал и методы. В качестве исходного материала использованы табличные данные нормальных показателей эхокардиограммы [1,2,3]. С целью стандартизации и упрощения формул расчета использовался показатель площади тела (BSA). Статистический анализ проводился с помощью пакета STATISTICA 6.

Результаты исследования. В табл. 1 приведены формулы расчета нормальных показателей одномерной эхокардиограммы, выбранные с учетом наиболее высокой корреляции (r^2) со значениями 50-процентильного распределения и достоверности (p<0.05).

Таблица – Формулы регрессии нормальных возрастных показателей сердца.

Показатель	Формула	\mathbf{r}^2
Толщина передней стенки правого желудочка (мм)	2.8857*BSA ^{0.1015}	0.9668
Диастолический размер правого желудочка (мм)	7.4461*e ^{0.4587*BSA}	0.9898
Толщина межжелудочковой перегородки (мм)	5.8055*BSA ^{0.3688}	0.9772
Диастолический размер левого желудочка (мм)	$38.537*BSA^{0.4509}$	0.9896
Систолический размер левого желудочка (мм)	24.231*BSA ^{0.4469}	0.9972
Толщина задней стенки левого желудочка (мм)	$6.0963*BSA^{0.3988}$	0.9854
Диаметр аорты (мм)	19.443*BSA ^{0.4578}	0.9981
Диаметр легочной артерии (мм)	8.2037*Ln(BSA)+23.968	0.9818
Диастолический размер левого предсердия (мм)	24.695*BSA ^{0.3911}	0.9975

Выволы:

- 1. С помощью регрессионного анализа определены формулы расчета возрастных нормативов основных показателей одномерной эхокардиограммы с высокой степенью корреляции и достоверности.
- 2. Нормальные возрастные показатели эхокардиограммы могут быть рассчитаны с помощью стандартных вычислительных средств (ПК, калькулятор) и программ (MS Excel).

Литература:

- Kampmann C., Wiethoff C.M., Wenzel A., Stolz G., Betancor M., Wippermann C-F., Huth R-G., Habermehl P., Knuf M., Emschermann T., Stopfkuchen H. // Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe // Heart. 2000. № 83. C. 667-672.
- 2. Белозеров Ю.М. Ультразвуковая семиотика и диагностика в кардиологии детского возраста. М.: Москва, 1999.
- 3. Клиническая ультразвуковая диагностика: Руководство для врачей: В 2 т. Т. 1 / Н.М. Мухарлямов, Ю.Н. Беленков, О.Ю. Атьков и др.; под ред. Н.М. Мухарлямова. М.: Медицина, 1987.

ОСОБЕННОСТИ СТРОЕНИЯ ЧЕРЕПА НОВОРОЖДЕННЫХ

Воробьёв А. А., Лукьянова О. И.

Гродненский государственный медицинский университет, Беларусь Кафедра анатомии человека Научный руководитель – д.м.н., проф. Е.С. Околокулак

Изучение вариантной анатомии человека является актуальным направлением современной морфологии. Исследование морфометрических характеристик лицевого и мозгового отделов черепа, показание варьирования размеров изученных структур в зависимости от размера гипофизарной ямки представляется актуальным, учитывая достаточно высокую встречаемость патологий у новорожденных и детей первого года жизни.

Цель исследования - обработать и обобщить имеющиеся данные о соотношении размеров лицевого и мозгового отделов черепа с размерами гипофизарной ямки в отечественной и зарубежной литературе.

Объектом исследования послужили 11 отечественных и 3 зарубежных литературных источников.

Развитие скелета головы у зародышей человека начинается на 1-м месяце эмбриогенеза. Первая закладка появляется в затылочной области и соответствует основной части затылочной кости. Первые признаки закладок костей свода черепа появляются почти одновременно с затылочной пластинкой. Четкие границы между отдельными закладками костей появляются только после начала их окостенения (через 4-4,5 мес. от начала внутриутробного развития). Точка окостенения в составе костей лицевого черепа появляется на 9-12-й неделе внутриутробного развития.

В связи с интенсивным ростом мозга во внутриутробный период развития размеры мозгового черепа значительно превышают размеры лицевого. Их соотношение у новорождённого ребёнка составляет 8:1. Высота головы у новорождённого укладывается в длине тела четыре раза. С возрастом это соотношение меняется, т. к. рост черепа отстаёт от роста всего организма.

Анатомия черепа новорождённых имеет свои особенности: а) бугры лобных и теменных костей хорошо выражены, лобная кость состоит из двух половин,