significant deviations from the optimal measures in laboratory data: increased ESR, glucose and anemic syndrome.

MOST COMMON RADIOINDUCED REACTIONS OF LUNG CANCER RADIOTHERAPY

Khadheeja Haisha Shareef¹, Iba Shareef¹, Parkhomenko Larisa Borisovna²

Grodno State Medical University, Grodno, Belarus¹, Institute of Advanced Training and Retraining of Healthcare Personnel, Belarusian State Medical University, Minsk, Belarus²

Introduction. The treatment of lung cancer is based on multidisciplinary approach which includes surgery, radiotherapy, systemic therapies such as chemotherapy, immunotherapy and targeted agents, as well as interventional radiology and palliative care. Among these methods, radiotherapy is the only treatment method that is indicated for all stages of the disease and also possible for patients with perfomance status ECOG 3.

Over the years, radiotherapy has advanced rapidly. New methods include standard configuration of computed tomography on linear accelerators, stereotactic ablative body radiotherapy, intensity-modulated radiotherapy and respiratory gating. All these methods are used to decrease incidence of complications of radiotherapy that could occur due to effect to the surrounding normal tissue by large margins of radiation beam and tumour motions.

Occurence of radiotherapy complications can be due to various reasons including, individual radiosensitivity, dose rate, comorbid status and age of the patient, type of radiation, clinical exposure volumes, and the chosen fractionation regimen. There are concepts of "radiation injuries" and "radiation reactions," which are often misinterpreted. A radiation reaction is a reversible functional or morphological change in an organ or tissue that develops within three months of the start of radiotherapy. Radiation damage is an irreversible change in an organ or tissue that often requires special treatment and occurs after radiation exposure. The concept of "toxicity" of radiation therapy (in Russian literature, "radiation complications") is considered separately, which can be acute (early, up to 6 weeks after the start of treatment) and late (after 6 weeks after the start of treatment). Acute toxicity is associated with the reaction of ionizing radiation to radio-sensitive tissues. As a rule, these tissues regenerate well and recover in a short time. Late toxicity concerns radioresistant tissues, changes in which are associated with cytolysis, microcirculatory disorders, and the formation of fibrous and sclerotic changes.

During high-precision radiotherapy of lung cancer, the most common symptoms of acute toxicity that occur during therapy are radio-induced esophagitis, pulmonitis, dermatitis, asthenic syndrome, thoracalgia and cardiotoxicity.

The RTOGEORTC scales are used to standardize assessment approaches and to systematize data on the development of radiation reactions during and after radiotherapy. Assessment of damage to risk organs during planning is carried out in accordance with the dose-volume parameter based on the recommendations of the special group for the analysis of tissue effects of QUANTEC.

Aim of the study. To assess the severity of radiation reactions during and after high-precision radiation therapy for lung cancer.

Materials and methods. A retrospective analysis of outpatient records of patients treated at the Department of Radiology of the Grodno State Clinical Hospital No. 3. The Program Microsoft Excel is used for data processing.

Results and discussion. In the period from March to September 2024, 15 male patients with non-small cell lung carcinomas, histologically verified (86.67% of cases) and based on instrumental diagnostic data (13.33%), were treated using a linear electron accelerator using the VMAT technique at the Department of Radiology of the Grodno City Clinical Hospital No. 3. During treatment, clinical changes in the condition associated with the accumulation of a single focal dose were recorded. The toxic effects of the treatment were also evaluated in patients who arrived for control after treatment (the data are recorded in Tables 1-2.).

Table 1. - Acute toxic effects of lung cancer radiotherapy (up to 6 weeks from the start of treatment)

Type of toxicity	Grade 1	Grade 2	Grade 3
Pulmonitis	n=12 (80%)	n=3(20%)	_
Esophagitis	n=3 (20%)	n=11 (73,3%)	n=1(6,7%)
Dermatitis of the chest wall	n=3 (20%)	_	_
Thoracalgia	n=2 (13,3%)	_	_
Asthenic syndrome	n=13 (86,7%)	n=2 (13,3%)	
Cardiotoxicity (blood	_	_	n=1 (6,7%)
pressure lability, rhythm			
disturbances)			

Table 2. - Late toxic effects of lung cancer radiotherapy (after 6 weeks of treatment initiation)

Type of toxicity	Grade 1	Grade 2	Grade 3
Pulmonitis	_	n=3 (66,67%)	_
Esophagitis	n=2 (13,3%)	_	_
Dermatitis of the chest wall	n=2 (13,3%)	_	_
Thoracalgia	n=2 (13,3%)	_	_
Asthenic syndrome	n=4 (26,6%)	-	-
Cardiotoxicity (blood pressure	_	_	_
lability, rhythm disturbances)			

Conclusion. Radiotherapy for lung cancer is associated with the development of radiation damage to healthy surrounding organs. The most common acute radiation injuries include esophagitis, pulmonitis, and asthenic syndrome. It is not uncommon for one patient to have a combination of several pathological radio-induced conditions. Pulmonitis is one of the most common late effects of radiotherapy, and its treatment requires long-term support with glucocorticosteroid medications. Before the initiation of radiation therapy, the patient should be informed of the possible reactions to radiation to avoid unexpected situations and it should be clarified that these reactions are treatable if the doctor is informed about them in a timely manner.

CURRENT ASPECTS OF THE SEVERITY OF COGNITIVE IMPAIRMENT IN PATIENTS WITH CRITICAL CAROTID STENOSIS

Khvoryk Fedar

Mechnikov North-West State Medical University, Saint-Petersburg, Russia

Introduction. Stenotic lesions of cerebral arteries of atherosclerotic genesis predispose to the development of cognitive disorders; critical carotid stenosis plays a special role in these disorders. The severity of cognitive dysfunction after correction of carotid stenosis is an important consideration.

Aim of the study. To study the nuances of cognitive changes during the first six months after carotid endarterectomy.

Materials and methods. 83 patients with the diagnosis of critical stenosis of carotid arteries on the background of atherosclerosis were examined. There were 25 women (30.1%) and 58 men (69.9%) among the examined patients. The mean age was 64.8±5.3 years. All patients underwent surgical intervention – eversion carotid endarterectomy (CEA). To analyze the effect of carotid stenosis on cognitive changes, the patients were divided into two groups regarding the neuropsychological test Mini-Cog performed both before and after carotid endarterectomy. Group 1 included 49 patients (59%) who scored 4-5 points; group 2 included 34 patients (41%) who scored 2-3 points.

Results and discussion. The most significant impact on cognitive disorders in patients with critical carotid stenosis is caused by grade III AH (OR=12.8; CI 3.97-41.2). No less impact on the development of cognitive impairment is noted in the case of DM-2 (OR=8.13; CI 2.3-28.7). Other risk factors include postinfarction cardiosclerosis, which also predisposes to cognitive impairment (OR=6.88; CI 0.73-65.02). It should also be noted that before surgery 94.4% of the operated patients successfully answered the first two questions of the Mini-Cog test, whereas the third question caused difficulties in 38.9% of patients. After the operation, according to the results of neuropsychiatric examination, there were no significant changes in answering