- 3. Lillehoj E.P., Lu W., Kiser T. et al. MUC1 inhibits cell proliferation by a beta-catenin-dependent mechanism // Biochim Biophys Acta. 2007. Vol.1773. №7. P. 1028-38.
- 4. Schmitz J.M., Durham C.G., Ho S.B., Lorenz R.G. Gastric Mucus Alterations Associated With Murine Helicobacter Infection // J. Histochem. Cytochem. 2009. Vol.57. №5. P.457-467.
- 5. Wei X, Xu H, Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response // Cancer Cell. 2005. №2. P. 167-78.

ОЦЕНКА МЕТАСТАТИЧЕСКОГО ПОТЕНЦИАЛА РАКА ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ НА ОСНОВАНИИ ДАННЫХ МОРФОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Гриб А.К., Жигулич С.П.

УО «Гродненский государственный медицинский университет», УЗ «Гродненское областное патологоанатомическое бюро», г. Гродно, Беларусь

Рак предстательной железы является наиболее частым из онкоурологических заболеваний, встречающихся у мужчин пожилого возраста. Среди наиболее актуальных проблем новообразования остается поиск его прогностических критериев. Применяемый в настоящее время гистологический прогностический критерий рака с определением степени его дифференцировки по Gleasone не потерял своего значения, однако нуждается в совершенствовании, поскольку учитывает только микроскопическую структуру эпителиального компонента опухоли.

Цель исследования: на основании гистологического, иммуногистохимического и морфометрического исследования архивного операционного материала построить математическую модель прогнозирования метастатического потенциала рака предстательной железы.

Материалом данного исследования стали 47 наблюдений рака предстательной железы, полученные при трансуретральной резекции за период с 1996 по 2000 год. Проведено гистологическое исследование наблюдений с определением дифференцировки опухоли по Gleasone и grade. Также иммуногистохимически определен уровень экспрессии CD31, гладкомышечного актина и циклинов В1 и D1. Статистическая обработка результатов производилась с использованием пакета Statistica 6.0.

Результаты исследования. С помощью непараметрического корреляционного анализа (метод Spearman) установлено, что наличие

отдаленных метастазов высоко достоверно положительно связано с показателями, характеризующими степень прорастания сосудов опухолевую ткань (количество сосудов - r=0,47; p=0,0009, суммарная площадь сосудов - r=0,48; p=0,0006, суммарная длина окружностей сосудов r=0,43; p=0,002), и отрицательно - с площадью, занимаемой актином (r=-0.38; p=0.008) и средней толщиной сосудистой стенки (r=-0.39; р=0,007). Кроме того, существенные положительные корреляционные связи были обнаружены между наличием метастазов и экспрессией в цитоплазме эндотелиоцитов циклина В1 (r=0,35; p=0,01), а также уровнем циклина D1 в цитоплазме опухолевых клеток (r=0,29; p=0,05). Следует заметить, что величина и достоверность коэффициента корреляции увеличивалась при использовании скорректированного показателя экспрессии циклина D1 – разности, полученной при вычитании величины экспрессии этого циклина опухолевыми и стромальными клетками в одном и том же образце (r=0.35; p=0.01). Коррекция величины экспрессии и D1 проводилась с целью исключения циклинов В1 влияния неспецифических ростовых факторов по формулам:

$$D1_{\text{коррект}} = D1_{\text{опухоль}} - D1_{\text{строма}}, B1_{\text{коррект}} = B1_{\text{опухоль}} - B1_{\text{строма}}.$$

Для того чтобы установить связь между сочетанной экспрессией циклинов и склонностью к метастазированию все случаи были распределены на 5 групп, в зависимости от величины скорректированного уровня цитоплазматических В1 и D1.

Оказалось, что наименьшая частота отдаленных метастазов определяется во 2-й и 1-й группах, характеризующихся низкой экспрессией циклина D1 и низкой и умеренной величиной $B1_{\text{коррект}}$. Наиболее часто отдаленные метастазы определялись при высокой экспрессии обоих исследованных циклинов в цитоплазме опухолевых клеток.

Распределение степени злокачественности опухолей по Gleason также высоко достоверно связано с характером экспрессии циклинов D1 и B1 (Kruskal-Wallis test: H =14.61 p =0.006). У 50% обследованных 2-й группы оценка по Gleason колебалась от 5 до 7,5, у половины больных 1-й группы – от 5 до 8, в 3-й группе – от 6 до 8 (25 и 75 перцентиль, соответственно), а в 5-й группе минимальная оценка составляла 7 и более чем у 50% равнялась либо была больше 9.

Наиболее низкая выживаемость наблюдалась как при высокой, так и при низкой экспрессии обоих циклинов (5-я группа: M=26,27 месяцев, $SD=\pm17,88$, 1-я группа: M=36,27 месяцев, $SD=\pm26,18$,), самая высокая продолжительность жизни имела место в 3-й группе при низкой экспрессии циклина D1 и высокой — B1 (M=70,14 месяцев, $SD=\pm35,84$, по сравнению с 5-й группой $p_{3-5}=0,02$, по сравнению с 1-й группой $p_{3-1}=0,04$).

Значимо различалась в указанных группах также суммарная площадь экспрессии актина в сосудистых стенках (Kruskal-Wallis test: H=12.60, p=0.01) и их толщина (Kruskal-Wallis test: H=18.43, p=0.001). Наибольшее количество актина было в стенках сосудов в образцах, полученных у представителей 1-й и 2-й групп, наименьшее — у больных 5-й группы. Таким же образом различалась в группах толщина сосудистой стенки.

При группировании обследованных в зависимости от сочетания уровня экспрессии циклинов В1 и D1 клетками эндотелия было установлено, что достоверно чаще отдаленные метастазы выявлялись в тех случаях, когда концентрация этих белков в цитоплазме эндотелиоцитов максимальна.

От характера сочетания циклинов в эндотелии высоко достоверно зависел целый ряд параметров, характеризующих васкуляризацию опухолей. При максимальной экспрессии B1 и D1 (группа I) определялось самое большое количество сосудов на единицу площади препарата (Kruskal-Wallis test: H = 10,89, p = 0,004), с наибольшим суммарным периметром сосудистой стенки (Kruskal-Wallis test: H =6,57, p =0,04) и внутренней площадью сечения (Kruskal-Wallis test: H = 7.83, p = 0.02), но с наименьшей толщиной стенок этих сосудов (Kruskal-Wallis test: H =7,59, p вероятности метастазирования =0,02). расчета использовался многофакторный дискриминантный анализ. Полученные морфологические показатели подставили в приведенные ниже формулы вместо переменных $m_1, m_2, \dots m_{10}$ их значения для анализируемого случая.

$$\begin{aligned} y_1 &= -243,81935 + 0,05326 m_1 - 0,0002781 m_2 + 0,0010443 m_3 + 0,0007993 m_4 - \\ &- 14,4 m_5 + 0,4706 m_6 + 0,38528 m_7 + 1,8898 m_8 + 5,4795 m_9 + 1,8586 m_{10} \\ y_2 &= -267,5088 + 0,0937 m_1 - 0,0002228 m_2 + 0,0009242 m_3 + 0,0004714 m_4 - \\ &- 17,0562 m_5 + 0,5337 m_6 + 0,3427 m_7 + 0,3673 m_8 + 6,5745 m_9 + 2,3836 m_{10} \end{aligned}$$

где: m_1 — количество сосудов, m_2 — суммарная площадь поперечного сечения сосудов, m_3 — суммарный периметр, m_4 — площадь экспрессии гладкомышечного актина, m_5 — толщина гладкомышечного компонента стенки сосуда, m_6 — площадь экспрессии гладкомышечного актина в стенке сосуда, m_7 — внутренняя площадь сечения сосуда, m_8 — экспрессия D1 в строме, M_9 — $D1_{\text{коррект}}$, M_{10} — номер группы. Окончательное заключение дается на основании сравнения вычисленных показателей y_1 и y_2 : если $y_1 < y_2$ — риск возникновения отдаленных метастазов минимальный, если $y_1 \ge y_2$ — риск возникновения отдаленных метастазов высокий. Чем больше различие между y_1 и y_2 , тем выше достоверность прогноза.

Выводы. Связь интенсивности метастазирования с различными вариантами сочетаний уровня цитоплазматической экспрессии циклинов В1 и D1, очевидно объясняется тем, что скорость продукции и величина накопления этих циклинов отражает пролиферативную активность и антионкогенный потенциал опухолевой клетки. Под влиянием опухолевой

стимуляции ускоряется пролиферация эндотелия, увеличивается число и калибр сосудов в опухолевой ткани, но уменьшается толщина сосудистой стенки. Основным супрессором, подавляющим транскрипцию генов VEGF и HIF-1, является р53 [3, 4]. Кроме того, р53 может активировать гены тромбоспондина-1 и -2 — белков, вызывающих апоптоз эндотелиоцитов [1, 2]. Полученные результаты наглядно демонстрируют, что способность опухоли стимулировать рост сосудов прямо пропорциональна ее склонности к метастазированию и, вероятно, связана с функцией белка р53. Клетки с активированным р53 хуже переносят гипоксию, перестают секретировать VEGF и начинают производить ингибиторы ангиогенеза, что препятствует образованию новых сосудов.

Литература

- 1. Dameron, K.M., Volpert, O.V., Tainsky, M.A., and Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1 // Science.- 1994.-Vol. 265. P. 1582-1584.
- 2. Adolf, K.W., Liska, D.J., and Bornstein, P. Analysis of the promoter and transcription start sites of the human thrombospondin 2 gene// Gene. -1997. -Vol. 193.- P. 5-11.
- 3. Sugihara, T., Kaul, S.C., Mitsui, Y., and Wadhwa, R. Enhanced expression of multiple forms of VEGF is associated with spontaneous immortalization of murine fibroblasts. //Biochim. Biophys. Acta. 1994. Vol. 1224. P. 365-370.
- 4. Mukhopadhyay, D., Tsiokas, L., and Sukhatme, V.P. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression // Cancer Res.-1995.- Vol. 55.- P. 6161-6165.

КЛИНИКО- МОРФОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ВОСПАЛЕНИЯ В НЕЙРОЭПИТЕЛИАЛЬНЫХ ОПУХОЛЯХ, КОНТАМИНИРОВАННЫХ ВИРУСОМ ПРОСТОГО ГЕРПЕСА

Жукова Т.В., Недзьведь М.К., Пашкевич Л.А.

РНПЦ «Травматологии и ортопедии», УО «Белорусский государственный медицинский университет», г. Минск, Республика Беларусь

В ткани нейроэпителиальных опухолей часто встречается воспаление, что объясняется различными причинами [3]. Одной из таких причин может быть воспаление, вызванное контаминацией опухолей вирусом простого герпеса (ВПГ). Воспаление имеет ряд особенностей, которые отличают его от других видов[1, 2].