Кроме того, в группе ПАИ-1+Титацин было отмечено достоверное снижение концентрации серина (медианное значение отличается в 1,5 раза, p<0,05), но повышение уровня цистатионина (медианное значение отличается в 2 раза, p<0,05) в сравнении с контролем, что косвенно может указывать на активацию процесса транссульфурирования.

Однако, при введении изучаемой аминокислотной композиции уровни глицина и глутатиона, пониженные при ПАИ, достоверно не отличаются от контрольной группы, что можно рассматривать как нормализующий эффект Титапина.

- **Выводы.** 1. Прерывистая алкогольная интоксикация с однодневным интервалом в течение 28 суток приводит к изменению ряда показателей пула серосодержащих аминокислот и их метаболитов, что выражается в снижении уровней метионина, глутатиона и глицина.
- 2. Введение аминокислотной композиции Титацин на фоне ПАИ оказывает корригирующее действие на уровни глицина и глутатиона, но не приводит к нормализации уровней метионина, цистатионина и серина в скелетной мускулатуре крыс.

ЛИТЕРАТУРА

- 1. Семенчук А.К. Влияние различных периодов алкоголизации на пул серосодержащих соединений в миокарде крыс / А.К. Семенчук, В.В. Лелевич // Биохимия и молекулярная биология. 2023. №1(2). С. 26-30.
- 2. Levitt, D. E. Pathophysiological mechanisms of alcoholic myopathy Lessons from rodent models / D. E. Levitt, P. E. Molina, L.Simon, // J. Vet. Ani. Sci. 2021.– Vol.52, №2. P. 107-116.
- 3. Steiner, J. L. Dysregulation of skeletal muscle protein metabolism by alcohol / J. L.Steiner, C. H. Lang // J Physiol Endocrinol Metab. − 2015. − Vol.308, № 9. − P. E699-E712. doi:10.1152/ajpendo.00006.2015.
- 4. Ward, R. J. The role of calcium in alcohol-induced muscle damage / R. J.Ward, T. J. Peters // *Journal of Molecular and Cellular Cardiology*. 2020. Vol.148. P. 1-8.

СЕРОСОДЕРЖАЩИЕ АМИНОКИСЛОТЫ И ИХ МЕТАБОЛИТЫ МИОКАРДА КРЫС ПРИ НАЗНАЧЕНИИ АМИНОКИСЛОТНОЙ КОМПОЗИЦИИ ТИТАЦИН НА ФОНЕ ПРЕРЫВИСТОЙ АЛКОГОЛЬНОЙ ИНТОКСИКАЦИИ

Семенчук А.К.

Гродненский государственный медицинский университет, Гродно, Беларусь

Введение. Проблема алкоголизма не теряет своей актуальности уже много лет. Несмотря на существующие методы терапии, включая психотерапию и фармакотерапию, эффективность лечения остается недостаточной, а рецидивы – частыми. Это обусловлено сложным патогенезом

алкогольной зависимости, включающим нейробиологические, генетические и психологические факторы. По прежнему актуальными остаются исследования, связанные с уменьшением вреда, наносимого алкоголем функционированию всего организма, а также со снижением тяги к употреблению алкоголя.

Способы и формы употребления этанола очень разнообразны в человеческой популяции. Это может быть как хроническое регулярное употребление спиртных напитков, так и прерывистый периодический прием алкоголя. В связи с этим для лучшего изучения эффектов этанола на организм используются различные способы моделирования алкоголизма, как хроническая алкоголизация, так и сравнительно недавно разработанная модель прерывистой алкогольной интоксикации [1].

Одной из тканей, подверженных пагубному воздействию алкоголя, является сердечная мышца. Патологическое влияние алкоголя на миокард реализуется через комплекс механизмов, включая прямое токсическое действие, окислительный стресс, метаболические нарушения и фиброз. Этанол и его основной метаболит ацетальдегид повреждают кардиомиоциты, нарушая синтез белка, энергетический обмен и стабильность клеточных мембран [3]. Ацетальдегид способствует окислительному стрессу за счет генерации реактивных форм кислорода, что ведет к апоптозу клеток миокарда [4]. Алкоголь нарушает работу кальциевых каналов, ухудшая сократительную функцию миокарда [2]. Своевременная диагностика и отказ от алкоголя на ранних стадиях позволяют частично восстановить функцию сердца, однако при злоупотреблении изменения становятся необратимыми. Дальнейшие исследования в этой области могут быть направлены на поиск способов лечения, включая применение антиоксидантов, новых противовоспалительных средств и корректоров метаболизма.

В последние годы поиск новых лекарственных препаратов для лечения алкоголизма активизировался благодаря развитию нейрофармакологии и молекулярной биологии. Анализ современных исследований показывает растущий интерес к таким направлениям, как модуляция глутаматергической, дофаминергической и опиоидной систем, а также применение препаратов на основе аминокислот. Однако многие потенциальные средства требуют дальнейшего изучения в рамках доклинических и клинических испытаний.

Целью данной работы стало изучение влияния аминокислотной композиции Титацин на пул серосодержащих аминокислот и их метаболитов миокарда крыс при прерывистой алкогольной интоксикации с однодневным интервалом.

Материалы исследования. В эксперименте было И методы беспородных крыс-самцов белых массой использовано находящихся на стандартном рационе вивария со свободным доступом к воде. алкогольная интоксикация (ПАИ) моделировалась внутрижелудочного введения этанола в дозе 3,5 г/кг массы тела дважды в сутки (через 12 часов) в виде 25 % раствора по схеме: 1 сутки введение этанола, 1 сутки введение эквиобъемного количества воды (группа ПАИ-1). Животным опытной группы проводили алкоголизацию по аналогичной схеме, заменив введение воды введением аминокислотной композиции Титацин (лейцин, изолейцин, валин, таурин, тиамин, пантотенат кальция, сульфат цинка) по 250 мг/кг массы тела дважды в сутки (группа ПАИ-1+Титацин). Животные контрольной группы внутрижелудочно дважды в сутки получали эквиобъемные количества воды. Длительность эксперимента составила 28 суток. Декапитацию проводили через 1 час после последнего введения алкоголя или воды. При выполнении исследований придерживались правил и норм биоэтического обращения с экспериментальными животными.

Содержание свободных аминокислот определяли методом обращеннофазной ВЭЖХ с использованием жидкостного хроматографа Agilent 1200 (Agilent Technologies, США), после дериватизации с о-фталевым альдегидом и 3-меркаптопропионовой кислотой с детектирование по флуоресценции (338/455 нм). Обработка хроматограмм осуществлялась по методу внутреннего стандарта (норвалин).

Статистическую обработку данных проводили с помощью непараметрических методов. Результаты выражали в виде медианы (Ме) и рассеяния (25 и 75 процентилей). Для сравнения двух независимых выборок по количественным признакам использовали U-критерий Манна-Уитни, различия считали статистически значимыми при р<0,05. При этом использовали пакет статистических программ Statistica 10.0.

Результаты исследования и их обсуждение. Употребление этанола на протяжении 28 дней в режиме ПАИ с однодневным интервалом вызвало в миокарде достоверное снижение концентрации метионина (медианное значение отличается на 30%, p<0,05) по сравнению с контрольными значениями. Помимо таурина, концентрация понизилась НО возросло содержание цистеинсульфиновой кислоты (медианное значение отличается на 14% в первом случае и в 2,6 раза во втором, р<0,05) по отношению к контролю, что может свидетельствовать о снижении скорости образования таурина. Так же в группе ПАИ уменьшилось содержание серина (медианное значение отличается на 15% в сравнении с контрольными значениями, р<0,05). Корреляционный анализ показал сохранение положительной корреляции метионин-глицин, но нарушение всех корреляционных взаимосвязей цистатионина по отношению к контролю.

Применение Титацина на фоне ПАИ в миокарде привело к значительному обеднению пула серосодержащих соединений. Наблюдалось уменьшение содержания метионина по сравнению с контрольной группой (медианное значение отличается на 34%, р < 0,05), как и при ПАИ-1 без коррекции. Содержание таурина в данной группе еще более значительно понизилось по сравнению с контролем (медианное значение отличается на 30%, p<0,05). Это может быть связано с увеличением здесь концентрации β -аланина (медианное значение отличается на 17%, p<0,05), который является антагонистом в транспорте таурина.

Уровень глутатиона в группе ПАИ-1+Титацин достоверно понижен как в сравнении с контролем, так и с ПАИ-1 (p < 0.05).

Так же в группе ПАИ-1+Титацин миокарда наблюдалось снижение концентраций серина и глицина. Уровень серина достоверно понижен по отношению к контролю (p < 0.05), а содержание глицина ниже как в сравнении с контролем, так и с ПАИ-1 (p < 0.05).

Выводы. 28-суточное прерывистое употребление этанола с однодневным интервалом вызвало изменение широкого спектра показателей из пула серосодержащих соединений миокарда крыс (цистеинсульфиновая кислота, серин, таурин, метионин).

При введении композиции Титацин на фоне ПАИ наблюдались более выраженные изменения в пуле серосодержащих соединений миокарда крыс, чем без применения аминокислот.

ЛИТЕРАТУРА

- 1. Лелевич В.В., Лелевич С.В. Способ моделирования прерывистой алкогольной интоксикации у крыс в эксперименте Патент №14289 от 01.11.2011.
- 2. Domínguez, F. Alcoholic cardiomyopathy: an update / F. Domínguez, E. Adler, P. García-Pavía // Eur Heart J.— 2024.— Vol.45(26). P.2294-2305. doi: 10.1093/eurheartj/ehae362.
- 3. Fernández-Solà, J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy / J. Fernández-Solà // Nutrients. 2020. Vol.12(2). P.572. doi: 10.3390/nu12020572.
- 4. Piano, M.R. Alcohol's Effects on the Cardiovascular System / M.R. Piano // Alcohol Res. 2017. Vol.38(2). P.219-241.

РОТЕОМ ЧЕЛОВЕКА: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ Сетдарова Н., Леднёва И.О.

Гродненский государственный медицинский университет, Гродно, Республика Беларусь

Протеом — это совокупность экспрессированных белков в данном типе клеток или в организме, в данный период времени при данных условиях. Термин «протеом» предложил в 1994 году австралийский учёный Марк Уилкинс. Полный протеом организма — совокупный набор протеомов всех клеток. Область, занимающаяся изучением данного аспекта - протеомика.

«Протеом человека» (HPP) — международный проект по созданию протеомной карты, включающей все белки, кодируемые геномом человека. Он стартовал в сентябре 2010 года в Сиднее [1]. В состав участников проекта «Протеом человека» входят стран-инициаторов: Республика шесть Корея, США, РФ, Швеция, Канада и Иран, усилия которых направлены на хромосомами измерение белков, кодируемых 26 человека, также митохондриальная хромосома. В отличие от генома, который определяется последовательностью нуклеотидов, протеом сводится не К сумме последовательностей аминокислот. Протеом себя также включает В