ЗАЩИТНОЕ ДЕЙСТВИЕ СВОБОДНОГО И НАНОКВЕРЦЕТИНА ПРИ ИНИЦИИРОВАНИИ ОКИСЛИТЕЛЬНОГО СТРЕССА В КЕРАТИНОЦИТАХ ЧЕЛОВЕКА

Потапович А. И. 1 , Костюк Т. В. 1 , Шутова Т. Γ . 2 , Костюк В. A^{1}

¹Белорусский государственный университет ²Институт химии новых материалов НАН Беларуси, Минск, Беларусь

Актуальность. Традиционные способы доставки фармакологических препаратов при лечении сердечно-сосудистых, онкологических и других заболеваний сопряжены с рядом серьезных системных побочных эффектов, связанных с тем, что для обеспечения нужной концентрации в области потенциальной мишени приходится увеличивать дозу препарата. Поэтому в к использованию наблюдается растущий интерес ГОДЫ терапии нанотехнологий. Создаваемые лекарственной наночастицы (НЧ) широко используются для повышения стабильности, биодоступности и специфичности фармакологических препаратов. Ранее нами было показано, что растительные полифенольные соединения (РПС) и, в частности кверцетин, обладают цитопротекторным действием в условиях клеточного окислительного стресса [1, 2], однако, низкая растворимость в воде ограничивает возможность их фармакологического применения. Поэтому получение микро- и наночастиц, содержащих РПС, и исследование их эффектов представляется биологических весьма актуальной Несомненно, что ввиду меньшей токсичности предпочтительнее использование с этой целью биосовместимых и биоразлагаемых природных полимеров, например желатина или хитозана.

Цель исследования. Оценить перспективность использования наноструктур на основе желатина, как средства повышения биодоступности и эффективности кверцетина при инициировании окислительного стресса в кератиноцитах человека.

Материалы Объектом методы. исследования являлась иммортализованная клеточная линия кератиноцитов человека НаСаТ. Клетки культивировали во флаконах T25 (Sarstedt, США) в среде ДМЕМ, содержащей 10 % FBS в стандартных условиях (37 °C, 5 % CO₂). Экспозицию с исследуемыми веществами проводили в 96- и 24-луночных планшетах Окислительный (Sarstedt, США). стресс инициировали добавлением гидропероксида трет-бутила (tBHP). Исследуемые препараты добавляли к среде инкубации, не содержащей сыворотки непосредственно перед внесением tBHP. Использовали свободный кверцетин и кверцетин, загруженный в наночастицы желатина с диаметром 160-190 нм, полученные методом двухстадийной десольватации (Кв-НЧ1), и желатиновые наночастицы с LDL оболочкой из декстран сульфата И сополимера хитозан-декстран (Кв-НЧ2). Жизнеспособность клеток оценивали с помощью реагента PrestoBlueTM,

повреждение кератиноцитов оценивали по выходу лактатдегтидрогеназы (ЛДГ) и методом двойного окрашивания (акридиновый оранжевый/этидиум бромид).

Результаты и обсуждение.

Внесение в культуральную среду tВНР приводит к дозозависимому повреждению кератиноцитов человека, и при концентрации в культуральной среде 500 мкмоль/л через 24 ч наблюдается максимальный цитотоксический эффект, о чем свидетельствует: снижение практически до нуля количества метаболически активных клеток, способных осуществлять энергозатратную реакцию восстановления индикатора жизнеспособности клеток резазурина в флуоресцентный пигмент резоруфин; нарушение плазматических мембран и выход из клеток более 90 % цитоплазматического фермента ЛДГ; окрашивание ядер всех клеток невитальным красителем (этидиум бромид). Выявленное нами снижение количества свободных SHгрупп в клетках при инкубации с tВНР согласуется с существующими представлениями о свободнорадикальном механизме его цитотоксического действия.

В последующих экспериментах было исследовано влияние свободного и наноструктурированного кверцетина, а также желатиновых наночастиц, не содержащих кверцетин (НЧ1 и НЧ2), на окислительное повреждение кератиноцитов человека tВНР. Установлено, что кверцетин в концентрации 25 мкмоль/л достоверно снижает степень повреждения кератиноцитов, оцениваемого по выходу из клеток фермента лактатдегтидрогеназа через 24 ч инкубации. Эффект кверцетина существенно увеличивается при внесении его в культуральную среду в виде желатиновых наноструктур, при этом у желатиновых наноструктур, не содержащих кверцетин, защитный эффект не выявлен (таблица 1).

Таблица 1 — Влияние свободного и наноструктурированного кверцетина на повреждение кератиноцитов, оцениваемое по выходу из клеток фермента лактатдегтидрогеназы через 24 ч инкубации с tBHP

Условия эксперимента	Количество неповрежденных клеток, %
Контрольные клетки	100±4,0
tBHP, 500 мкмоль/л	8,1±3,4 [§]
+ Кв 12,5 мкмоль/л	7,0±2,5 [§]
+ Кв 25 мкмоль/л	28,3±6,2*
+ НЧ1 12,5 мкмоль/л	11,0±3,4 [§]
+ НЧ1 25 мкмоль/л	63,6±9,9 [*] ^Δ
+ НЧ2 12,5 мкмоль/л	5,2±2,3 [§]
+ НЧ2 25 мкмоль/л	65,6±13,1 ^{* Δ}

 $^{^{\}S}$ - $p \le 0.00001$ vs контроль; * - $p \le 0.05$ vs t-tBHP; $^{\Delta}$ - $p \le 0.01$ vs кверцетин

Более выраженное цитопротекторное действие наноструктурированного кверцетина в сравнении со свободным также подтверждено методом двойного окрашивания (рис.) и с помощью реагента PrestoBlue.

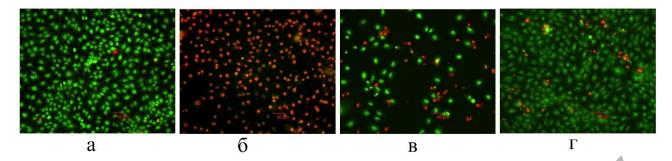


Рисунок 1 - Флуоресцентные микрофотографии кератиноцитов, окрашенных системой акридиновый оранжевый/этидиум бромид (а) контрольные клетки, (б) клетки через 24 ч инкубации с tBHP (500 мкмоль/л); (в) с tBHP в присутствии 50 мкмоль/л свободного кверцетина; (г) с tBHP в присутствии 50 мкмоль/л НЧ1.

Следует отметить, что свободный и наноструктурированный кверцетин одинаково эффективно предотвращали снижение количества свободных SH групп в клетках через 4 ч инкубации с tBHP (табл. 2).

Таблица 2 — Влияние свободного и наноструктурированного кверцетина на уровень свободных SH-групп в кератиноцитах человека через 4 ч инкубации с tBHP

Условия эксперимента	SH-группы, нмоль/мл лизата клеток
Контрольные клетки	18,9±0,6
tBHP, 500 мкмоль/л	14,1±0,6 [§]
+ Кв 12,5 мкмоль/л	18,7±1,4*
+ Кв 25 мкмоль/л	18,7±0,6*
+ НЧ1 12,5 мкмоль/л	19,6±1,2*
+ НЧ1 25 мкмоль/л	19,5±1,4*
+ НЧ2 12,5 мкмоль/л	$20,4{\pm}0,7^*$
+ НЧ2 25 мкмоль/л	18,7±1,4*

 $^{^{\$}}$ - $p \le 0,00001$ vs контроль; * - $p \le 0,0001$ vs tBHP

Выводы. Установлено, что включение кверцетина в наночастицы на основе желатина без и с LDL оболочкой повышает его биодоступность и существенно усиливает его антиоксидантное действие в условиях окислительного стресса, инициируемого гидропероксидом трет-бутила в кератиноцитах человека.

ЛИТЕРАТУРА

- 1. Потапович, А.И. Влияние растительных полифенолов на УФС-индуцированные повреждения ядерной ДНК в кератиноцитах / А.И. Потапович, А. Албухайдар, В.А. Костюк // Евразийский союз ученых. 2020. № 4, ч. 2. С. 45–48.
- 2. Potapovich, A.I. DNA repair activation and cell death suppression by plant polyphenols in keratinocytes exposed to UV-irradiation / A.I. Potapovich, T.V Kostyuk, T.V. Shman, T.I. Ermilova, T.G. Shutava, V.A. Kostyuk // Rejuvenation Res. 2023 Vol. 26 P. 1–8.