длительном введении этанола, вероятно, связано с патологией печени, развивающейся при хронической алкогольной интоксикации. Это обусловлено угнетением обмена гликогена при введении этанола.

Результаты проведенного пошагового дискриминантного анализа показывают зависимость выраженности изменений исследованных показателей углеводного обмена в мышцах от длительности алкогольной интоксикации (рисунок 2).



Рисунок 2. — Расположение реализаций экспериментальных групп для показателей углеводного обмена в скелетной мускулатуре крыс на плоскости двух главных компонент при хронической алкогольной интоксикации

Выводы. Таким образом, как однократное, так и длительное введение этанола в организм сопровождается нарушениями углеводного обмена в скелетной мускулатуре крыс.

ЛИТЕРАТУРА

1. Щеглова, Н.С. Алкоголь-индуцированное поражение скелетных мышц у женщин с хронической алкогольной интоксикацией / Н.С. Щеглова, О.Е. Зиновьева, Б.С. Шенкман // Российский неврологический журнал. — 2021. — 1000 10

ВЛИЯНИЕ КОМБИНИРОВАННОЙ ХИМИОТЕРАПИИ НА БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ СЫВОРОТКИ КРОВИ КРЫС С ЛИМФОСАРКОМОЙ ПЛИССА

Маглыш С. С., Хомбак В. А.

Гродненский государственный медицинский университет, Гродно, Республика Беларусь

Актуальность. Как известно, высокая токсичность противоопухолевых препаратов и низкая избирательность их действия являются главной проблемой онкофармакологии. При проведении химиотерапии злокачественных

новообразований частота побочных и токсических реакций достигает 100 %, а летальность от осложнений химиотерапии составляет около 20 % [1]. По этой причине учеными ведутся активные поиски препаратов для снижения токсичности химиотерапии и повышения ее избирательности.

Известны соединения, которые обладают проокисдантной активностью, способные усиливать противоопухолевую активность химиотерапевтических средств за счет модуляции тиол-дисульфидного редокс баланса опухолевых клеток, в частности, одним из таких перспективных соединений является цистеамин.

Цистеамин – аминотиол, обладающий антиоксидантным действием, является химиосенсибилизирующим и радиозащитным агентом. Известно, что обладает прооксидантной активностью счет модуляции 3a активности фермента глутатионпероксидазы, что приводит к интенсивному образовыванию пероксида водорода в опухолевых клетках [2]. Цистеамин стимулирует образование внутриклеточного глутатиона de novo. Активация биосинтеза глутатиона не влияет на токсичность цистеамина, но при накоплении последнего до концентрации 200 мкМ приводит к ингибированию глутатионпероксидазы [2]. Цистеамин в клетках образуется в результате ферментативного гидролиза пантетеина под действием фермента пантетеиназы [3]. Известно, что производное D-пантетеина – D-пантенол, обладает редоксмодулирующей активностью за счет модуляции системы глутатиона, что было показано ранее [4].

Цель. Целью настоящего исследования явилось определение биохимических показателей сыворотки крови крыс с лимфосаркомой (ЛС) Плисса при применении комбинированной химиотерапии.

Методы исследования. В эксперименте были использованы 24 самца крыс линии Вистар массой 150-200 г, содержавшихся на стандартном рационе вивария Института биохимии биологически активных соединений НАН получения суспензии опухолевых клеток ферментативную (0,5 мг/мл коллагеназы, раствор Хенкса, 30 мин, 37 °C) и механическую дезагрегацию ткани ЛС Плисса, изъятой от животныхопухоленосителей. Клетки культивировали в среде DMEM, содержащей 15 % телячьей сыворотки, 100 Ед/мл пинициллина и 100 Ед/мл стрептомицина в течение 72 ч при 37 °C, 5% CO₂. Затем полученные клетки опухоли осаждали центрифугированием при 1500 об/мин в течение 5 мин. Осадок клеток ресуспендировали в растворе Хенкса. Полученную суспензию клеток ЛС Плисса в объеме 0,5 мл вводили здоровым животным подкожно в паховую область, однократно. После семидневного интервала животныхопухоленосителей разделили на три опытные группы. Животным группы I не химиотерапии. Животные вводили препараты группы II получали доксорубицин гидрохлорид (Dox) в дозе 5 мг/кг, внутрибрющинно, однократно в течение 5 дней. Животные группы III в дополнение к аналогичной инъекции Dox получали композицию D-пантенола (ПЛ, 200 мг/кг, внутрибрюшинно) с цистеамином (ЦSH, 100 мг/кг, внутрибрюшинно). Крысы контрольной группы эквиобъемное количество физиологического раствора. После завершения эксперимента крыс декапитировали, кровь собирали в вакутейнер с активатором свертывания и центрифугировали 15 мин при 3000 об/мин.

В сыворотке крови крыс были исследованы следующие биохимические показатели: глюкоза, холестерол, триглицериды, общий белок, альбумины, глобулины. Для анализа использовали наборы реагентов НТПК «Анализ-Х» (Беларусь). Полученные результаты обрабатывали методом вариационной статистики статистики (* - p<0,05 по отношению к контрольной группе; # - p<0,05 по отношению к интактным крысам-опухоленосителям).

Результаты и их обсуждение. Результаты определения биохимических показателей сыворотки крови контрольных и опытных крыс представлены в таблице 1.

Таблица 1. Биохимические показатели сыворотки крови контрольных и опытных крыс с ЛС Плисса

Показатели	Контроль	Группа I	Группа II	Группа III
Глюкоза, ммоль/л	9,32±0,86	3,47±1,15*	5,01±1,06*#	5,84±1,47*#
Холестерол, ммоль/л	2,09±0,27	1,45±0,27*	1,72±0,69#	2,10±0,29#
Триглицериды, ммоль/л	1,42±0,16	3,82±1,22*	2,94±0,89*	1,77±0,69#
Общий белок, г/л	66±4	60±9	57±11*	52±2*#
Альбумины, г/л	36±3	26±3*	27±2*	28±1*
Глобулины, г/л	30±4	33±8	29±9	24±2*#
Альбумины/глобулины	1,20	0,76	0,93	1,17

Примечание: группа I — интактные крысы-опухоленосители; группа II — крысы-опухоленосители, получавшие Dox в дозе 5 мг/кг, внутрибрющинно, однократно; группа III — крысы-опухоленосители, которые кроме указанной дозы Dox получали $\Pi \Pi$ в дозе 200 мг/кг и ЦSH в дозе 100 мг/кг, внутрибрющинно в течение 5 дней.

Результаты, представленные в табл. 1, показывают, что уровень глюкозы в сыворотке крови у крыс-опухоленосителей достоверно снижен во всех опытных группах по отношению к контрольным животным, вероятно, вследствие усиленного ее потребления на опухолевый рост. В то же время у животных, получавших химиотерапию, этот показатель достоверно повышается сравнению интактными крысами-опухоленосителями, причем присутствии ПЛ и ЦЅН ЭТОТ эффект более Аналогичная выражен. закономерность наблюдается на уровне холестерола. Уровень триглицеридов, повышенный у крыс-опухоленосителей І-й и ІІ-й групп относительно контроля, при применении комплексной химиотерапии достоверно снижается относительно значений у интактных крыс-опухоленосителей и приближается к значениям у контрольных животных.

Как видно из данных табл. 1, резкое снижение соотношения альбумины/глобулины у интактных крыс-опухоленосителей по сравнению с контролем нормализуется после применения комплексной химиотерапии благодаря разнонаправленному изменению содержания альбуминов и глобулинов.

^{*-}p<0.05 по отношению к контрольной группе;

^{# –} p<0,05 по отношению к интактным крысам-опухоленосителям.

Выводы. На основании полученных результатов можно сделать следующие выводы:

- 1. Лимфосаркома Плисса приводит к достоверному снижению уровня глюкозы, холестерола и альбуминов, но повышает содержание триглицеридов и не изменяет уровень общего белка в сыворотке крови крыс-опухоленосителей, не получавших химиотерапию.
- 2. Применение химиотерапии в комплексе с ПЛ и ЦЅН способствует более эффективному изменению исследованных показателей сыворотки крови в сторону их контрольных значений, за исключением общего белка.
- 3. Комплексная химиотерапия (Dox+ПЛ+ЦSH) способствует нормализации метаболического профиля и белкового коэффициента (альбумины/глобулины) в сыворотке крыс с ЛС Плисса.

ЛИТЕРАТУРА

- 1. Зырняева, Н.Н. Исследование эффективности химиотерапии экспериментальной холангиоцеллюлярной карциномы с помощью магнитоуправляемых липосом с доксорубицином: дис. канд. мед. наук: 14.03.06 / Н.Н. Зырняева. Саранск, 2014. 148 с.
- 2. Cysteamine suppresses invasion, metastasis and prolongs survival by inhibiting matrix metalloproteinases in a mouse model of human pancreatic cancer / T. Fujisawa [et al.] // PLoS One. − 2012. − Vol. 7, № 4. − P. 34437. − Doi: 10.1371/journal.pone.0034437.
- 3. Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice / G. Pitari [et al.] // FEBS Lett. -2000. Vol.483, N₂ 2-3. P. 149-154.
- 4. Семенович, Д.С. Модуляция системы глутатиона и S-глутатионилирования белков предшественниками биосинтеза кофермента A при окислительном стрессе *in vitro* / Д.С. Семенович // Новости медико-биологических наук. -2019. Т. 19, № 3. С. 55-60.

ОЦЕНКА СТЕПЕНИ ГЕМОЛИЗА И ИЗМЕНЕНИЕ КЛЕТОЧНОГО СОСТАВА КРОВИ ЧЕЛОВЕКА ПОСЛЕ КОНТАКТА С ПОЛИСУЛЬФОНОМ В УСЛОВИЯХ СТЕНДОВОГО ЭКСПЕРИМЕНТА

Макаревич Д.А., Рябцева Т.В., Дусь Д.Д., Королик А.К., Очковский В.А., Занемонец Е.А.

¹УО «Белорусский государственный медицинский университет» ²ГУ «МНПЦ хирургии, трансплантации и гематологии», Минск, Республика Беларусь

Актуальность. Полисульфон (ПС) — полимер, который широко используется в медицинских изделиях при создании мембран для гемодиализа и гемосорбции. Важными техническими характеристиками ПС являются