Выводы. Таким образом, можно говорить о наличии особенностей анатомического строения, аномалий и пороков развития у детей с синдромом Дауна в дыхательной, пищеварительной, нервной, сердечно-сосудистой системах, а также в строении опорно-двигательного аппарата. Эти особенности могут варьироваться, и не все люди с синдромом Дауна будут иметь все перечисленные характеристики. Медицинское наблюдение и поддержка могут в значительной мере помочь в лечении и управлении многими из этих особенностей.

Список литературы

- 1. Михайлов, В. С. Анатомия синдрома Дауна / В. С. Михайлов // Научно-исследовательская работа обучающихся и молодых ученых : материалы 72-й Всероссийской (с международным участием) научной конференции обучающихся и молодых ученых, Петрозаводск, 09–29 апреля 2020 года / Петрозаводский государственный университет. Петрозаводск: Петрозаводский государственный университет, 2020. С. 329-331.
- 2. Беляшова, М. А. Респираторные проявления синдрома Дауна / М. А. Беляшова, Ш. А. Гитинов, Д. Ю. Овсянников // Педиатр. 2016. Т. 7, № 2. С. 164-169.
- 3. Урядницкая, Н. А. Синдром Дауна: особенности нейроанатомии / Н. А. Урядницкая // Синдром Дауна. XXI век. -2012. -№ 1 (8). -C.10-12.
- 4. Синдром Дауна и сердечно-сосудистая патология: клиническое наблюдение и обзор литературы / Е. В. Резник [и др.] // РМЖ. 2022. №9 С. 35-40.
- 5. Григорьев, К. И. Синдром Дауна / К.И. Григорьев, О. Ф. Выхристюк, А. М. Егоренков // Медицинская сестра. 2014.- №7.- С. 20-29
- 6. Поздняя диагностика аномалии развития кишечника у ребенка 3 лет с синдромом Дауна / А. И. Колотилина [и др.] // Доказательная гастроэнтерология. 2017. №6(3). С. 60-63.

ВАРИАНТЫ СТРОЕНИЯ И МОРФОМЕТРИЧЕСКИЕ ОСОБЕННОСТИ ПЛАЦЕНТЫ ЧЕЛОВЕКА

Шнип А. Е., Конопелько Г. Е., Шестакович Е. Н.

Белорусский государственный медицинский университет Республика Беларусь, г. Минск

Актуальность. Система мать-плод формируется в период беременности, она включает две отдельные подсистемы — организм матери и организм плода, а также плаценту — связующее звено между ними. Плаценте принадлежит особо важная роль — орган способен не только аккумулировать, но и синтезировать вещества, необходимые для развития плода. Вырабатывая ряд гормонов — прогестерон, плацентарный лактоген, хорионический гонадотропин, эстроген и др., плацента осуществляет гуморальные и нервные связи в системе мать-плод.

Цель. Изучить варианты строения и морфометрические особенности плаценты человека.

Методы исследования. Для описания индивидуальных и видимых патологических изменений плаценты (последа, детского места), использована органометрия 100 плацент, полученных в родах. Пуповина и оболочки плодной поверхности плаценты осмотрены сразу после выведения их из родовых путей. Также были изучены 100 УЗИ-сканов беременных женщин в возрасте от 19 лет до 41 года, проанализированные по историям болезней рожениц родильного отделения УЗ «6-я городская клиническая больница г. Минска» для определения топографии плаценты в полости матки и доплерометрии сосудов пуповины. Статистическая обработка полученных данных проводилась с использованием программы «Місгозоft Excel 2013» и диалоговой системы «Statistica 10.0».

Результаты и выводы. Плацента (от лат. placenta – «пирог, лепешка»), послед, детское место – орган неправильной дисковидной формы, по данным литературы имеющий диаметр до 15 см и толщину до 3 см [2, с. 107].

Плацента человека относится к типу дискоидальных гемохориальных начинается Развитие плаценты на плацент. эмбриогенеза, когда во вторичные (эпителиомезенхимные) ворсины начинают врастать сосуды и образовываться третичные ворсины. К концу 4-й недели в плаценте формируется сложная сосудистая сеть, которая облегчает обмен веществ между матерью и эмбрионом (газами, питательными веществами и продуктами метаболизма). На 6-8-й неделе вокруг сосудов дифференцируются макрофаги, фибробласты, коллагеновые волокна [1, с. 109]. В дифференцировке фибробластов и синтезе коллагена важную роль играют витамины С и А, без достаточного поступления которых в организм беременной нарушается прочность связи зародыша с материнским организмом и создается угроза самопроизвольного аборта.

Нами проведена органометрия 100 плацент, определены ее линейные размеры: продольная (а) и поперечная длина (b); толщина (c) и масса (m) органа, а также площадь материнской поверхности плаценты (S), (рис.1).

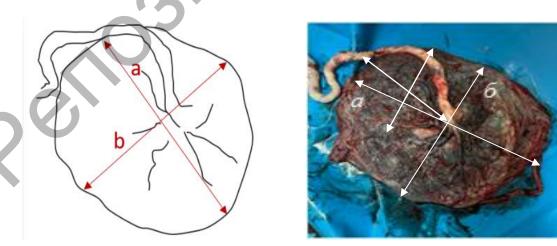


Рисунок 1. – Морфометрия плаценты: а – продольная длина; b – поперечная длина плаценты

В ходе нашего исследования установлено, что масса плаценты рожавших женщин варьировала от 400 г до 800 г и в среднем составила 590 (520; 650) г.

В среднем продольный размер последа составил 20 (18; 20) см, средний поперечный размер плаценты также составил 19 (17; 20) см, толщина последа составила 2 (2; 2,5) см.

Плацента имеет 2 поверхности: плодную и материнскую. Плодная поверхность образована ворсинчатым хорионом. Ворсинки хориона, которые растут из него, выступают в межворсинчатое пространство, содержащее материнскую кровь. Материнская поверхность образована децидуальной оболочкой, которая связана с плодным компонентом плаценты. К концу 4-ого месяца пренатального онтогенеза децидуальная оболочка почти полностью заменяется плодной частью плаценты [2, с. 107].

Визуальная оценка структуры материнской поверхности плаценты показала, что в ходе исследования встречаются 2 структурных типа плаценты: однородный (22%) и неоднородный (умеренно неоднородный – 60%, выраженно неоднородный – 18%) (рис. 2,3), что совпадает с данными литературы [3, с. 735].

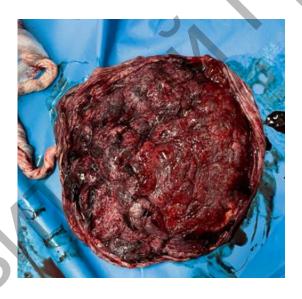


Рисунок 2. – Материнская поверхность плаценты

Рисунок 3. – Процентное соотношение типов плацент

Цвет материнской поверхности всех осмотренных плацент в норме буровато-красный (рис. 4).

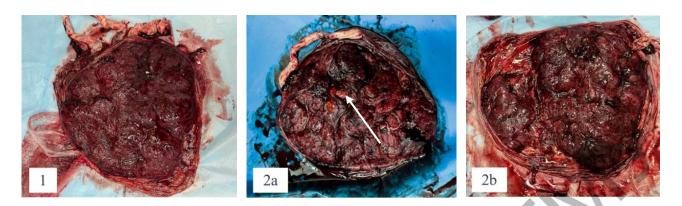


Рисунок 4. – Типы плацент

1 – Однородный тип плацент; 2а – умеренно неоднородный тип (наличие кальцинатов); 2b – выраженно неоднородный тип (двудолевая плацента)

Визуальная оценка плодной поверхности плаценты показала, что в норме она покрыта плодными оболочками, не отечная, не отслоившаяся, по цвету – графитовая (рис. 5).

Рис. 5. Плодная поверхность плаценты

В родах имеется несколько способов выведения плацент из полости матки; в нашем случае данные способы распределились в следующем процентным соотношении: самостоятельно (61%); потягиванием за пуповину (32%); удален рукой (7%), (рис. 6).

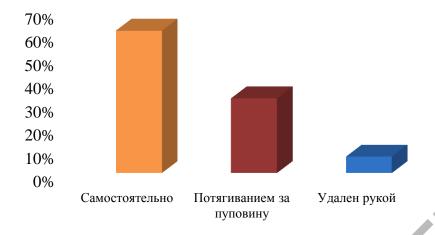


Рисунок 6. - Способы выведения плаценты из матки

По данным УЗИ-сканов беременных женщин послед прикреплялся чаще всего на задней стенке матки (57%), иногда вдоль передней стенки матки (40%) и в области дна матки (3%).

Нами прослежена корреляция возраста беременных женщин и массы их плаценты. С увеличением возраста роженицы отмечается тенденция к увеличению массы ее плаценты (p<0,05).

Рисунок 7. – Диаграмма рассеяния для массы плаценты и возраста роженицы

Установлена прямая сильная статистически значимая корреляция между массой плаценты, а также весом и длиной тела плода (p<0,05) (рис. 7).

Выявлена прямая умеренная статистически значимая корреляция между: поперечным размером плаценты и весом роженицы, а также весом и длиной тела плода (p<0,05); толщиной плаценты и антропометрическими показателями плода и кровопотерей при родах (p<0,05) (таблица 1).

Таблица 1 -Коэффициент Спирмена (r), (p<0,05).

	Вес роженицы	Рост роженицы	Вес плода	Длина тела плода	Кровопотер я при родах
Продольный размер плаценты	0,24	0,16	0,25	0,25	0,03
Поперечный размер плаценты	0,34	0,11	0,35	0,42	0,26
Толщина плаценты	0,13	0,26	0,43	0,33	0,36
Масса плаценты	0,12	0,08	0,66	0,56	0,06

Достоверных отличий между морфометрическими показателями плаценты в различных возрастных группах рожениц нами не установлено (p>0.05).

Пуповина соединяет плод с плацентой. В пупочном канатике проходят две пупочные артерии и одна пупочная вена. По пупочным артериям течет венозная кровь от плода к плаценте; по пупочной вене притекает к плоду артериальная кровь, обогащенная в плаценте кислородом и питательными веществами. Пуповинные сосуды окружены вартоновым студнем [4, с. 15]. Длина пуповины, по нашим исследованиям, в среднем составила 61 (55; 65) см. Выявлены 2 типа прикрепления пупочного канатика: нормальное (центральное (23%) и эксцентричное (73%)), а также краевое (не более 1 см до края плаценты). Краевой тип прикрепления встретился в 4% случаев (рис. 8).

Рисунок 8. — Центральное прикрепление канатика (1a); эксцентричное прикрепление канатика (1b); краевое прикрепление канатика (2)

Нами установлено, что достоверных отличий между морфометрическими показателями пуповины в различных возрастных группах рожениц не установлено (p>0,05).

С увеличением возраста рожениц отмечается тенденция к уменьшению длины пуповины. Длина пуповины, по нашим исследованиям, в среднем составила 61 (55; 65) см (рис. 9).

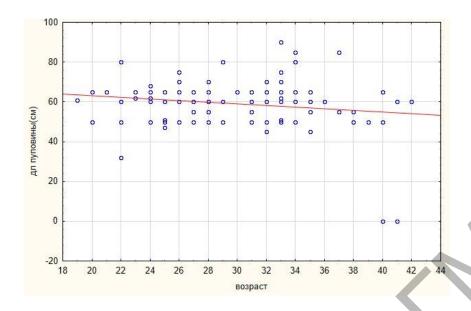


Рисунок 9. – Диаграмма рассеяния для длины пуповины и возраста рожениц

В группе рожениц 35 - 55 лет при увеличении количества выкидышей в анамнезе уменьшается длина пуповины (r=-0.76, p<0.05).

Таким образом в ходе исследования было установлено, что:

- 1. Плацента рожениц имеет индивидуальные особенности строения;
- 2. Морфометрические параметры плаценты в различных возрастных группах рожениц значимых отличий не имеют (p>0,05) и в среднем ее продольный и поперечный размеры составляют 20 (19; 20) см и 19 (17; 20) см соответственно, а масса и толщина 590 (520; 650) г и 2(2; 3) см соответственно;
- 3. С увеличением возраста роженицы отмечается тенденция к увеличению массы ее плаценты (p<0.05); при увеличении толщины плаценты, увеличивается кровопотеря при родах (r=0,4, p<0,05);
- 4. Структурно выделяют 2 типа плаценты: однородный (встречается в 22% случаев) и неоднородный (умеренно неоднородный 60%, выраженно неоднородный 18% случаев), что совпадает с данными литературы;
- 5. В 61% случаев плацента выводится из полости матки самостоятельно, в 32% потягиванием за пуповину и в 7% удаляется рукой; в большинстве случаев плацента прикрепляется к задней стенке матки (57%), реже к передней стенке (40%) и в области дна матки (3%);
- 6. Пупочный канатик прикрепляется к плаценте двумя типами: нормально (центрально 23% и эксцентрично -73%) и в 4% имеется краевое прикрепление;
- 7. Длина пупочного канатика в различных возрастных группах рожениц значимых отличий не имеет (p>0,05) и в среднем составляет 61 (55; 65) см; При увеличении количества выкидышей в анамнезе роженицы уменьшается длина пупочного канатика (r=-0,76, p<0,05);
- 8. При увеличении антропометрических параметров новорожденного (вес, рост) увеличивается масса плаценты (r=0,6, p<0,05), а также ее поперечный размер (r=0,4, p<0,05);

Список литературы

- 1. Keith, L. Moore The developing human: clinically oriented embryology / Keith, L. Moore, T.V.N. Persaud, Mark, G. Torchia. 10th ed. Philadelphia, 2016. P. 109.
- 2. Студеникина, Т. М. Гистология, цитология и эмбриология : учеб. пособие / Т. М. Студеникина [и др.] ; под ред. Т.М. Студеникиной. Минск : Новое знание ; М. : ИНФРА-М, $2013.-574~\rm c.$
- 3. Струков, А. И. Патологическая анатомия : учебник / А. И. Струков, В. В. Серов. 5-е изд., стер. М. : Литтерра, 2012. 848 с.
- 4. Малевич, Ю. К. Акушерство : учебное пособие / Ю. К. Малевич [и др.]; под общей ред. Ю. К. Малевича. Минск : Беларусь, 2017. 511 с.

АТРЕЗИЯ ПИЩЕВОДА В СОЧЕТАНИЙ С ДРУГИМИ ВРОЖДЕННЫМИ ПОРОКАМИ РАЗВИТИЯ

Ярмолик П. Д., Конопелько Г. Е.

Белорусский государственный медицинский университет Республика Беларусь, г. Минск

Актуальность. Актуальность проблемы врожденных пороков развития внутренних органов состоит в том, что смертность от них занимает третье место в общей структуре смертности детей первого года жизни. Частота встречаемости атрезии пищевода (АП) — 1:3000-1:4000 новорожденных, в равной степени у мальчиков и девочек [1]. Наиболее частый вариант порока — сочетание атрезии с трахеопищеводным свищом. Коррекция осуществляется только путем хирургического лечения. Ранняя диагностика атрезии пищевода возможна при достаточной осведомленности врачей о симптомах болезни и владении инструментальными методами обследования.

Цель. Изучить типы атрезии пищевода у новорожденных, их корреляции с соматометрическими параметрами новорожденных, сочетанными патологиями и осложнениями после проведенного лечения.

Методы исследования. Ретроспективно изучались данные, полученные из историй болезней и рентгенограммы 85 новорожденных с атрезией пищевода за период с 2018 по октябрь 2024 года из архива отделения рентгенологии «Республиканского научно-практического центра детской хирургии» г. Минска. Учитывался возраст и масса тела новорожденного на момент госпитализации, срок гестации плода, возраст матери, количество беременностей и родов. Для статистической обработки использовалась программа «МісгоsoftExcel 2013» и возможности диалоговой системы «Statistica 10.0».

Результаты и выводы. Нарушение процессов реканализации передней кишки в раннем онтогенезе человека является причиной развития атрезии