Осложнения основного заболевания: Недостаточность сердца. Общее венозное полнокровие. Отек и очаговый гемосидероз легких. Гидроторакс справа. Асцит. Интерстициальная пневмония. Множественные рубцы почек.

Сопутствующие заболевания: Тазовая дистопия и удвоение правой почки. Аутоиммунный тиреоидит с атрофией и фиброзом паренхимы щитовидной железы.

Таким образом, представленное секционное наблюдение демонстрирует развитие двух последовательных (с интервалом в 1 месяц) инфарктов миокарда у молодой женщины, страдавшей сахарным диабетом 1 типа с выраженной макро- и микроангиопатией. Сахарный диабет способствует развитию атеросклероза, его выраженности и распространенности, тем самым являясь фактором риска ишемической болезни сердца, в том числе инфаркта миокарда, в молодом возрасте. Клиническое течение инфаркта миокарда у пациентов с сахарным диабетом часто осложнено и приводит к более высокому уровню смертности, чем без диабета. Это диктует необходимость оптимизации медицинской помощи молодым пациентам с сахарным диабетом с целью профилактики, своевременного выявления и лечения сердечно-сосудистых заболеваний.

Список литературы

- 1. Константинова, Е. В. Инфаркт миокарда у молодых: причины и прогноз / Е. В. Константинова, Н.М. Балаян, Н.А. Шостак // Клиницист. -2017. Т. 10/11, № 14. С. 10-15.
- 2. . Селиверстова, Д.В. Факторы риска развития инфаркта миокарда у молодых женщин / Д.В. Селиверстова, О.В. Евсина // Лечебное дело. -2019. -№1. С. 37-43.

ВОЗДЕЙСТВИЕ АСФИКСИИ-РЕОКСИГЕНАЦИИ НА ДИАМЕТР НЕЙРОНОВ ТЕМЕННОЙ КОРЫ ГОЛОВНОГО МОЗГА КРЫС

Валько Н. А., Максимович Н. Е., Гацкевич В. А., Корней И. В.

Гродненский государственный медицинский университет Республика Беларусь, г. Гродно

Введение. Асфиксия головного мозга может выступать в роли этиологического и фактора развития патологии нейронов головного мозга [1, 2]. Следующая за асфиксией реоксигенация может оказывать влияние на их функции.

Цель. Изучить влияние асфиксии и следующей за ней реоксигенации головного мозга на диаметр нейронов теменной коры головного мозга крыс.

Методы исследования. Исследование проведено на 24 самцах белых беспородных крыс массой 230±20 г., разделённых на 4 группы по 6 животных в каждой. Первую группу составили ложно оперированные крысы, вторую – крысы с асфиксией, моделируемой путём пережатия трахеи в течение 1-минутной. В третью и четвёртую группы вошли животные с моделируемой 1-минутной асфиксей и реоксигенацией длительностью 1 час и 1 сутки, соответственно.

По истечении срока асфиксии или реоксигенации крыс выводили из эксперимента путём декапитации. У животных извлекали образцы головного мозга, которые фиксировались в жидкости Карнуа. Изготовленные из этих образцов гистологические срезы окрашивали по методу Ниссля.

В ходе исследования изучали нейроны 5-го слоя теменной коры головного мозга. На изготовленных с помощью цифровой видеокамеры Leica DFC 320 и микроскопа Axioskop 2 plus (увеличение 40х) микрофотографиях на светооптическом уровне с использованием программы компьютерного анализа изображения Image Warp определялись максимальный (DMax) и минимальный (DMin) диаметры клеток.

Полученные данные обрабатывали статистически с помощью пакета программ Statistica 10.0 методами непараметрической статистики (Mann-Whitney U-test).

Результаты и выводы. При сравнении значения DMax нейронов крыс с асфиксией со значением DMax нейронов животных контрольной группы различий не выявлено (p<0,05). У крыс 3-й группы DMax нейронов был больше на 23,5% по сравнению с DMax нейронов 1-й группы (p<0,01) и на 16,6% — по сравнению с DMax нейронов крыс 2-й группы (p<0,01). В 4-й группе значение DMax не отличалось от такового в 3-й группе. В то же время DMax нейронов 4-й группы был больше на 21,5% по сравнению с DMax 1-й группы и на 14,8% (p<0,01) — по сравнению с DMax нейронов крыс 2-й группы (p<0,01).

Аналогичная картина наблюдалась в отношении DMin. У крыс 2-й группы значение DMin нейронов не отличалось от такового у животных 1-й группы. У крыс 3-й группы DMin нейронов был больше на 19,4% по сравнению с DMin нейронов 1-й группы (p<0,05) и на 14,2% — по сравнению с DMin нейронов крыс 2-й группы (p<0,05). Значение DMin нейронов 4-й группы не отличалось от значения DMin в 3-й группе. В то же время DMin нейронов 4-й группы был больше на 12,1% по сравнению с DMin нейронов в контроле (p<0,01) и на 7,2% — по сравнению с DMin нейронов крыс во 2-й группе (p<0,05).

Таким образом, 1-минутная асфиксия не оказывает влияния на максимальный и минимальный диаметры нейронов теменной коры больших полушарий. Моделируемая реоксигенация длительностью 1 час приводит к выраженному увеличению обоих исследуемых показателей. При этом данные изменения показателей размеров нейронов остаются таковыми в течение первых суток реоксигенационного периода.

Предполагается, что увеличение диаметра нейронов (как максимального, так и минимального) ведёт к нарушению водно-электролитного баланса и гипергидратации нейронов из-за возникающего энергодефицита.

Список литературы

- 1. Hu, C. Apoptosis and necroptosis occur in the different brain regions of hippocampuss in a rat model of hypoxia asphyxia / C. Hu // The International journal of neuroscience. -2021. Vol. 131, No. 9. P. 843-853.
- 2. Zhu, J. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardia arrest in rats. / J. Zhu // Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2018. Vol. 38, N 11. P. 1979-1992.

АНАТОМИЯ ВИЛЛИЗИЕВА КРУГА У ПАЦИЕНТОВ С АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ: МОРФОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ И ИХ ПОСЛЕДСТВИЯ

Волчкевич Д. А., Токина И. Ю.

Гродненский государственный медицинский университет Республика Беларусь, г. Гродно

Актуальность. Артериальная гипертензия (АГ) — одно из наиболее распространенных хронических заболеваний, которое оказывает значительное влияние на сосудистую систему головного мозга. Длительное повышение артериального давления приводит к изменениям сосудистой стенки, нарушению эластичности артерий и повышенному риску тромбозов и аневризм [1,2]. Особую роль в обеспечении кровоснабжения головного мозга играет Виллизиев круг — система анастомозов, которая поддерживает коллатеральное кровообращение в случае нарушения проходимости магистральных сосудов [3].

В норме Виллизиев круг выполняет компенсаторную перераспределяя кровоток при стенозах или окклюзиях внутренних сонных и позвоночных артерий. Однако при артериальной гипертензии этот механизм может быть нарушен из-за морфологических изменений сосудов. К ним относятся утолщение стенок артерий, уменьшение просвета, ИΧ атеросклеротические изменения, а также врожденные аномалии, такие как гипоплазия или аплазия соединительных артерий [4,5]. Эти процессы могут снижать эффективность коллатерального кровообращения и повышать риск острых нарушений мозгового кровообращения, включая инсульты [6].

Структура Виллизиева круга отличается значительной анатомической вариабельностью. По данным исследований, полная и симметричная форма этой сосудистой сети встречается лишь у 30-50% людей [3,7]. При гипертензии