по одной из сторон дефекта может быть выкроена полулунная заплата соответствующего размера.

Двойной пузырный проток. Описаны наблюдения, в которых единственный ЖП дренировался в желчевыводящую систему двумя ПП. Основной проток впадал в общий желчный в обычном месте, дополнительные же протоки — несколько выше или в правый печеночный проток.

Другой вариант, также относимый к этой категории ВП, заключается в том, что обнаруживаемый единственный ПП может состоять из 2 трубок, заключенных в единую оболочку, либо иметь продольную перегородку на разном протяжении своей длины.

Происхождение этой ВП объясняют нарушениями разрешения солидной стадии. Просвет в ПП появляется в течение седьмой педели эмбрионального развития. В процессе вакуолизации часто образуются 2 или 3 просвета, которые затем сливаются в один окончательный. Если такого слияния не произойдет или оно будет неполным — возможно формирование нескольких протоков или остаточных продольных перегородок.

Добавочные ПП, отдельно дренирующиеся в общий желчный или печеночный проток, не мешают адекватному опорожнению ЖП и клинически себя не проявляют. Наличие «двустволки» или продольной перегородки существенно нарушает пассаж желчи, создавая условия для развития холецистита.

Список литературы:

- 1. Топографическая анатомия и оперативная хирургия аномалий и врожденных пороков развития: пособие / Ю. М. Киселевский [и др.] Гродно: ГрГМУ, 2019. 1 эл. опт. диск.
- 2. Баиров, Г.А. Хирургия печени и желчных протоков у детей / Г.А. Баиров, А.Г. Пугачев, А.П. Шапкина. Л.: Медицина, 1970. 280c.
- 3. Оперативная хирургия детского возраста / под ред. Е.М. Маргорина. Л: Медгиз, 1960.-476c.

МОРФОМЕТРИЧЕСКИЕ ИЗМЕНЕНИЯ НЕЙРОНОВ КРУПНОКЛЕТОЧНОГО СЛОЯ ПОЯСНОЙ КОРЫ МОЗГА КРЫСЫ ПРИ ХОЛЕСТАЗЕ

Климуть Т. В., Заерко А. В., Зиматкин С. М.

Гродненский государственный медицинский университет, Республика Беларусь

Актуальность. Холестаз, состояние, при котором наблюдается нарушение оттока желчи из печени, может оказывать значительное влияние на функционирование головного мозга. Результатом воздействия данной патологии является накопление компонентов желчи в мозге, что вызывает его

нарушения. Это может проявляться в виде когнитивных расстройств, таких как снижение памяти, нарушения концентрации внимания и проблемы с координацией движений. В обеспечении когнитивных функций принимает участие поясная кора. Она является частью лимбической системы и относится к аллокортексу [1]. Влияние холестаза на неокортекс изучено, информация о влиянии холестаза на поясную кору головного мозга в литературе отсутствует. В связи с этим, необходимо принимать меры по предотвращению холестаза, чтобы минимизировать негативные последствия его для мозга.

Цель. Изучить морфометрические изменения нейронов поясной коры 5-го крупноклеточного слоя мозга крысы при подпеченочном холестазе.

Методы исследования. Эксперимент проводился на 72 беспородных белых крысах самцах массой 225±25 грамм. Контрольных и опытных животных содержали в стандартных условиях вивария, в индивидуальных клетках со свободным доступом к воде и полноценной пище. Исследование проведено в соответствии с принципами биоэтики и требованиями Директивы Европейского Парламента и Совета № 2010/63/ЕU от 22.09.2010 о защите животных, [2]. Подпеченочный использующихся ДЛЯ научных целей моделировали по методу Л. С. Кизюкевича путем перерезки общего желчного протока (ОЖП) между двумя лигатурами на 2–3 мм ниже места слияния печеночных протоков [3]. Выбор уровня перевязки/перерезки, обусловлен тем, что перевязка выше этого уровня может не приводить к полному холестазу, а ниже него в ОЖП впадают многочисленные протоки поджелудочной железы, перевязка которых приводит к развитию панкреатита и быстрой гибели всех животных [4]. Животным контрольной группы проводили ложную операцию с сохранением физиологического тока желчи в двенадцатиперстную кишку на протяжении всего эксперимента. Животных контрольной и опытной группы, после усыпления в парах эфира, декапитировали на 2-е, 5-е, 10-е, 20-е, 45-е и 90-е сутки. Для исследования брали кусочки больших полушарий головного мозга, фиксировали их в жидкости Корнуа при +4°C (на ночь), а затем заключали в парафин. Фронтальные срезы толщиной 7 мкм готовили с помощью микротома (LeicaRM 2125 RTS, Германия) и монтировали на предметные стекла. Препараты окрашивали по методу Ниссля (0,1 % водным раствором тионина) для анализа их цитоплазмы по степени хроматофилии. Для выявления содержания рибонуклеопротеинов $(PH\Pi)$ окрашивали галлоцианин-хромовыми квасцами по методу Эйнарсона. Для идентификации поясной коры использовали схемы стереотаксического атласа. Морфометрию нейронов проводили в крупноклеточном (5-ом) слое поясной коры.

Для анализа цитоплазмы нейронов поясной коры по степени хроматофилии подсчитывали процент нормохромных (умеренная интенсивность окраски цитоплазмы), гиперхромных (интенсивная окраска цитоплазмы и

деформированный перикарион), гипохромных (со слабой окраской цитоплазмы) нейронов и клеток-теней (очень слабое окрашивание).

Цитофотометрическое исследование гистохимических препаратов проводили, определяя оптическую плотность полученного осадка хромогена в цитоплазме нейронов поясной коры, на максимуме поглощения окрашенных продуктов реакций. Относительное содержание вещества выражали в единицах оптической плотности.

Изучение гистологических препаратов, их микрофотографирование и морфометрию проводили при разных увеличениях микроскопа Axioskop 2 plus (Zeiss, Германия), встроенной цифровой видеокамеры Leica DFC 320 (Leica Microsystems GmbH, Германия) и программы компьютерного анализа изображения Image Warp (BitFlow, США).

Данные полученные при морфометрическом исследовании обрабатывали с помощью лицензионной компьютерной программы Statistica 10.0 для Windows (StatSoft, Inc., США, серийный номер AXAR207F394425FA-Q). В работе использовали описательную статистику, анализ данных проводили методами непараметрической статистики. Для каждого показателя определяли значение медианы (Ме), значение нижнего квартиля (LQ), значение верхнего квартиля (UQ) и интерквартильного диапазона (IQR). Объекты исследования набирали в группы независимо друг от друга, поэтому сравнение групп по одному признаку проводили с помощью критерия Манна-Уитни для независимых выборок (Мапп-Whitney U-test). Различия между группами считали статистически значимыми, если вероятность ошибочной оценки не превышала 5% (р<0,05; где р – критическое значение уровня значимости).

Результаты и выводы. При анализе размеров и формы нейронов крупноклеточного слоя установлено, что на 5 сутки после перерезки ОЖП происходит уменьшение форм-фактора перикарионов нейронов на 2,2% (p<0,001), периметра — на 4,6% (p<0,001). На 10-е сутки в них достоверно уменьшается площадь перикарионов — на 10,7% (p<0,001), большой радиус — на 20,5% (p<0,01), малый радиус — на 15,9% (p<0,001), периметр — на 12,1% (p<0,001). На 20-е сутки площадь уменьшена — на 7,7% (p<0,01), малый радиус — на 4,4% (p<0,05). На 45-е сутки уменьшены площадь перикарионов этих нейронов на 2,4% (p<0,001), малый радиус — на 10,0% (p<0,001), форм-фактор на 4,7% (p<0,01), периметр — на 4,0% (p<0,001), а фактор элонгации увеличен на — на 6,8% (p<0,001). Через 90 суток после перевязки ОЖП в морфометрических параметрах сохранившихся нейронов крупноклеточного поясной коры не наблюдается достоверных изменений.

При анализе размеров и формы ядер нейронов крупноклеточного слоя установлено, что у животных опытной группы на 2 сутки после перерезки общего желчного протока не выявляется значительных изменений. На 5 сутки после перерезки ОЖП происходит уменьшение большого диаметра ядер на 4,6% (p<0,01), малого радиуса – на 3,4% (p<0,05), периметра – на 4,2% (p<0,01). На 10-е сутки достоверно уменьшается площадь ядер – на 1,5% (p<0,001),

малый радиус — на 1,2% (p<0,001), большой радиус — на 0,3% (p<0,001), периметр — на 1,7% (p<0,001). На 20-е сутки уменьшена площадь ядра — на 7,0% (p<0,05), малый радиус — на 7,91% (p<0,01), форм-фактор — на 4,4% (p<0,01), а фактор элонгации увеличен на — 1,6% (p<0,05). ЯЦО этих нейронов у опытных животных увеличено на 10 сутки после перерезки общего желчного протока на 12,2%, на 20 сутки на 33,3%, на 45 сутки на 12,7%. Через 45 и 90 суток после перевязки ОЖП в морфометрических параметрах ядер крупноклеточного нейронов поясной коры не наблюдается достоверных изменений.

При изучении 5-го, крупноклеточного слоя поясной коры при холестазе отмечено увеличение числа патологических форм нейронов, сателлитоз и нейронофагия.

Число нейронов 5-го, крупноклеточного слоя поясной коры с нарушением хроматофилии цитоплазмы при холестазе значительно меняется (таблица 1).

Таблица 1 — Число нейронов с разной хроматофилией цитоплазмы 5-го крупноклеточного слоя поясной коры мозга крыс после перевязки общего желчного протока, окраска по методу Ниссля, в %

желчного протока, окраска по методу тиселя, в 70						
1		Показатель				
TKI		нормохромные	гиперхромные	гиперхромные	гипохромные	клетки-тени
Сутки				сморщенные		
2-е	К	80	7,75	4,5	4,5	3,25
	О	77,5	8,25	6,5	4,75	3
5-e	К	77	8,25	6,25	4,5	4
	О	66,25*	12,5*	8,75*	7*	5,5
10-е	К	77	8,25	6,25	4,5	4
	О	60*	14,75*	10*	8,25*	7*
20-е	К	76	10	5,75	5	3,25
	О	60*	14,75*	10,25*	8,75*	6,25*
45-е	К	73,75	9,25	7,5	5,25	4,25
	О	66,75*	12,25	9,25	6,25	5,5
90-е	К	74,5	9,75	6,5	5	4,25
	О	73,5	10,25	6,75	5,25	4,25

Примечание – * – р < 0,05, при сравнении показателей контрольную группу сравнивали с опытной

На 5-е сутки холестаза количество нормохромных нейронов достоверно снижается на 14,0%, а количество гиперхромных сморщенных достоверно возрастает на 40% и гипохромных на 55,5%.

На 10-е сутки холестаза число нормохромных нейронов в этом слое уменьшено на 22,1%, при этом возрастает количество гиперхромных (на 78,8%), гиперхромных сморщенных (на 60%), гипохромных (на 83,3%) и клеток теней (на 75%) (р≤0,05, при сравнении с контролем). На 20-е сутки холестаза число нормохромных нейронов крупноклеточного слоя снижено на 21,1%, а количество патологических форм увеличено: гиперхромных — на 47,5%,

гиперхромных сморщенных – на 78,3%, гипохромных – на 75%, а клеток теней – на 92,3% (р≤0,05, при сравнении с контрольной группой).

На 45-е сутки после перевязки/перерезки общего желчного протока количество нормохромных клеток достоверно снижено только на 9,5% (р≤0,05, при сравнении с контрольной группой), а число нейронов с нарушенной хроматофилией не отличается от контроля.

Через 90 суток после перевязки ОЖП гистологические изменения в нейронах поясной коры нормализуются, что хорошо заметно и при подсчете числа нейронов с различной хроматофилией цитоплазмы.

После перерезки ОЖП по мере развития холестаза в поясной коре происходит постепенное уменьшение размеров нейронов и их ядер, которое достигает максимума в крупноклеточном слое на 10-20-е сутки. По мере уменьшения площади перикарионов нейронов и их ядер в крупноклеточном слое, их форма вытягивается (возрастает фактор элонгации). По мере нарастания холестаза происходит увеличение числа патологических форм нейронов. В дальнейшем, через 45-90 суток после перерезки ОЖП, происходит постепенная нормализация размеров и формы изучаемых нейронов.

По мере развития холестаза в крупноклеточном слое поясной коры постепенно уменьшаются размеры нейронов и их ядер, возрастает число патологических форм нейронов. Максимальное изменения развиваются на 10-20 сутки после перерезки общего желчного протока. В дальнейшем, через 45-90 суток после перерезки ОЖП, при устранении холестаза, у выживших животных, в сохранившихся нейронах происходит постепенная нормализация размеров и формы перикарионов, а также хроматофилии их цитоплазмы.

Список литературы:

- 1. Effects of CA₁ glutamatergic systems upon memory impairments in cholestatic rats / N. Hosseini [et al.] // Behav Brain Res. 2013. Vol. 256. P. 636–645.
- 2. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes: text with EEA relevance 20.10.2010. Strasbourg: Official Journal of the European Union, 2010. 46 p.
- 3. Кизюкевич, Л. С. Реактивные изменения в почках при экспериментальном холестазе / Л. С. Кизюкевич. Гродно : ГрГМУ, 2005. 239 с.
- 4. Зиматкин, С. М. Нейроны мозга при нарушениях циркуляции желчи / С.М. Зиматкин, С.В. Емельянчик. Гродно, 2021, ГрГМУ, 346 с.