Список литературы:

- 1. Айсачева, М. Преимущества использования образовательной платформы КАНООТ для обучения студентов медицинского института предмету "эндокринология" / М. Айсачева, И. Уринбоева // Thematic Journal of Applied Sciences. –Vol.3, № 6. 2023. Р. 4-9.
- 2.Царев, Р. Ю. Применение Kahoot! при геймификации в образовании / Р. Ю. Царев // Международный журнал перспективных исследований. Т.7, №1. 2017. С. 9-17.

СЛУЧАЙ НЕТИПИЧНОГО ВЕТВЛЕНИЯ ЛЕВОЙ КОРОНАРНОЙ АРТЕРИИ

Гаджиева Ф. Г.

Гродненский государственный медицинский университет, Республика Беларусь

В настоящее время одной из ведущих проблем современной медицины являются заболевания сердечно-сосудистой системы: почти 620 миллионов человек живут с заболеваниями сердца и системы кровообращения, а ежегодно прирост данной нозологии составляет около 60 миллионов человек [6].

кардиологической ассоциации, По данным Европейской Всемирного отчета по заболеваниям сердца в 2023 году, заболевания сердечнососудистой системы являются причиной 1 из 3 смертей в мире – это примерно 20,5 млн смертей в 2021 году, в среднем 56 000 человек каждый день или одна смерть каждые 1,5 секунды [7]. Национальный статистический комитет Республики Беларусь (Белстат) ежегодно публикует распределение лиц в возрасте 18 лет и старше, впервые признанными инвалидами, по классам болезней, где заболевания сердечно-сосудистой системы традиционно держат лидерство: в 2020 году - 25,8 на 10000 населения, в 2022 году - 26,5 на 10000 населения. Профилактика и лечение заболеваний сердечно-сосудистой системы находятся в центре внимания многих научно-исследовательских институтов и лечебных учреждений во всем мире, в том числе и в нашей стране.

Ветви восходящей аорты нередко являются объектом хирургического вмешательства при диагностике и лечении ишемической болезни сердца, что определяет интерес исследователей на более целенаправленное изучение топографо-анатомических особенностей коронарных артерий, с учетом их вариантов, аномалий развития, калибра, возможных коллатеральных связей, а также их взаимоотношений с окружающими образованиями.

Левая венечная артерия (ЛВА) берет начало от левого синуса аорты, располагается между легочным стволом и ушком левого предсердия и делится на две ветви: переднюю межжелудочковую (ПМЖВ) и более крупную – огибающую (ОВ), которая, следуя в венечной борозде, переходит на заднюю

поверхность сердца [1, 3]. В клинике начальный участок ЛВА до отхождения ветвей принято называть основным стволом (в англоязычной литературе — «left main coronary artery»), а место деления на главные ветви — бифуркацией. Гемодинамически значимое поражение основного ствола ЛВА (стеноз от 50% и более) не только влияет на качество жизни пациента, но и сопряжено с повышенным риском развития инфаркта миокарда и внезапной смерти. Трехлетняя выживаемость пациентов с поражением основного ствола ЛВА, находящихся на медикаментозном лечении, составляет 50%, а внезапная смерть таких больных возникает в 3-4 раза чаще, чем у пациентов с другой локализацией коронарного поражения. Столь высокие цифры позволили М. Jotsman и соавт. (1973 г.) образно, но метко назвать ствол ЛВА «артерией внезапной смерти» [2].

В связи с этим, детальное изучение вариантной анатомии коронарных артерий человека является актуальной проблемой, так как приобретенные данные позволят расширить имеющиеся и получить новые представления об индивидуальной изменчивости этих артерий, что, несомненно, очень важно для благополучного исхода диагностических и оперативных вмешательств.

По данным исследователей изменения ветвления коронарных артерий наблюдаются довольно часто (до 40% случаев). Однако, классификации вариантов ветвления разнятся, так как анатомическая терминология и термины клиницистов имеют отличия. Так в большинстве пособий и учебников по анатомии человека традиционно выделяют 2 главные ветви левой коронарной артерии (рисунок 1).

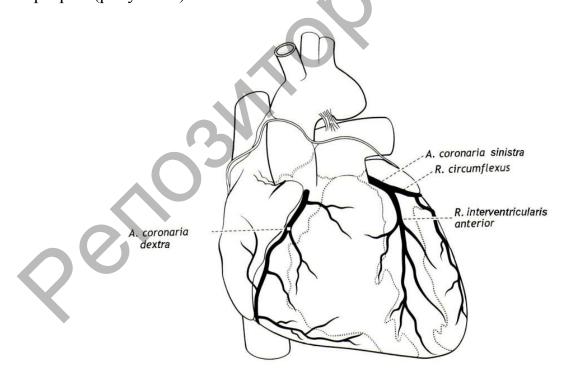


Рисунок 1 – Артерии сердца (грудино-реберная поверхность сердца)

В коронароангиографии с целью топического указания места поражения предложено делить коронарное русло на сегменты и указывать название ветвей с привязкой к конкретному сегменту (рисунок 2, 3). Присутствие клинической классификации связано с расширением возможностей ангиовизуализации коронарного русла, совершенствованием методик хирургических вмешательств.

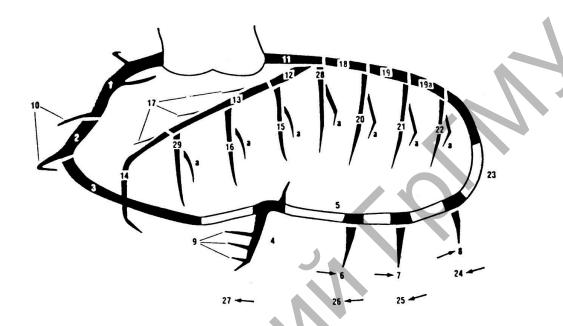


Рисунок 2 — Сегменты коронарных артерий по BARI (Bypass Angioplasty Revascularization Investigation)

1 – проксимальный сегмент правой коронарной артерии (ПКА); 2 – средний сегмент ПКА; 3 – дистальный сегмент ПКА; 4 – сегмент правой задней нисходящей артерии; 5 – правый задний атриовентрикулярный сегмент; 6 – первый правый заднелатеральный сегмент; 7 – второй правый заднелатеральный сегмент; 8 – третий правый заднелатеральный сегмент; 9 – сегмент септальных перфорирующих ветвей левой передней нисходящей артерии; 10 – сегмент ветви острого края; 11 – сегмент ЛВА; 12 – проксимальный сегмент левой передней нисходящей артерии; 13 – средний сегмент левой передней нисходящей артерии; 14 – дистальный сегмент левой передней нисходящей артерии; 15 – сегмент первой диагональной ветви; 15а – сегмент первой латеральной диагональной ветви; 16 – сегмент второй диагональной ветви; 16а – сегмент второй латеральной диагональной ветви; 17 – сегмент септальных перфорирующих ветвей левой передней нисходящей артерии; 18 – проксимальный сегмент огибающей артерии; 19 – средний сегмент огибающей артерии; 19а – дистальный сегмент огибающей артерии; 20 – сегмент первой ветви тупого края; 20а – латеральный сегмент первой ветви тупого края; 21 – сегмент второй ветви тупого края; 21а – латеральный сегмент второй ветви тупого края; 22 – третий сегмент ветви тупого края; 22а – латеральный сегмент третьей ветви тупого края; 23 – сегмент атриовентрикулярного продолжения огибающей артерии; 24 – первый сегмент левой заднелатеральной ветви; 25 – второй сегмент левой заднелатеральной ветви; 26 – третий сегмент левой заднелатеральной ветви; 27 – сегмент левой заднелатеральной артерии; 28 – сегмент межжелудочковой ветви; 28а – латеральный сегмент межжелудочковой ветви; 29 – сегмент третьей диагональной ветви; 29а – латеральный сегмент третьей диагональной ветви

Рисунок 3 — Анатомия левой венечной артерии, используемая при ангиографии (передне-задняя проекция)

1 — ствол левой коронарной артерии; 2 — проксимальная часть ПМЖВ; 3 — средняя часть ПМЖВ; 4 — дистальная часть ПМЖВ; 5 — проксимальная часть ОА; 6 — дистальная часть ОА; 7 — ветвь тупого края; 8 — первая диагональная ветвь; 9 — первая септальная ветвь; 10 — септальные ветви; 11 — ветвь ОА к ушку левого предсердия; 12 — ветвь тупого края

По данным исследователей изменения в анатомии левой коронарной артерии могут быть связаны с вариантами ее ветвления, начала, а также хода и особенностей распределения основных ветвей [3, 4, 5]. Авторы описывают несколько вариантов, которые выявляются во время вскрытия, а также прижизненного исследования сосудов сердца (коронарография, УЗИ-сердца): отхождение ствола ЛКА от легочного ствола [4], рассыпной тип ветвления, аплазия ствола коронарной артерии, единственная (левая) венечная артерия, трифуркация, квадрифуркация и др.

На кафедре нормальной анатомии в ходе подготовки к учебному процессу препарата сердца взрослого человека мужского пола 68 лет и препарирования коронарных артерий с использованием лупы ЛБ-2М обнаружен нетипичный вариант ветвления левой коронарной артерии.

В результате исследования установлено, что от ствола левой венечной артерии (внешний диаметр 6 мм) отходило сразу три ветви (трифуркация): передняя межжелудочковая ветвь (внешний диаметр 4 мм), огибающая ветвь (внешний диаметр 5,2 мм) и промежуточная ветвь (дополнительная ветвь к левому желудочку) (внешний диаметр 5 мм) (Рисунок 4).

Рисунок 4 – Фотография ветвления левой коронарной артерии

1 – левая венечная артерия, 2 – передняя межжелудочковая ветвь, 3 – промежуточная ветвь (дополнительная ветвь к левому желудочку), 4 – огибающая ветвь

В литературе принято описывать дополнительную ветвь к левому желудочку как промежуточную ветвь «ramus intermedius» [Kini S., et al. 2007]. Наличие промежуточной ветви является наиболее частым изменением анатомии левой венечной артерии, и в данном случае говорят о трифуркации ЛВА. Частота встречаемости трифуркации колеблется у разных исследователей, и в среднем составляет 38%. Сама промежуточная ветвь имеет переменное ветвление. Ramus intermedius может располагаться в виде диагональной или тупой краевой ветви в зависимости от того, снабжает ли она переднюю или латеральную стенку левого желудочка соответственно [2].

На исследуемом препарате трифуркации ЛВА промежуточная ветвь сразу же делилась на две, и можно сказать, ветвилась на диагональную и тупую краевую ветви.

Таким образом, анализ и детализация данных в отношении вариантов нормы в анатомии венечных артерий не теряет своей актуальности и требует продолжения, как в морфологических, так и клинических исследованиях.

Список литературы:

- 1. Бокерия, Л. А. Хирургическая анатомия венечных артерий / Л. А. Бокерия, И. И. Беришвили. М.: Издательство НЦССХ им. А. Н. Бакулева РАМН, 2003. 297 с.
- 2. Варианты анатомии и особенности атеросклеротического поражения бифуркаций коронарных артерий / Р. Е. Калинин [и др.] // Наука молодых (Eruditio Juvenium). -2024. Т. 12, № 1. С. 25-34.

- 3. Жарикова, Т. С. Индивидуально-типологическая и сочетанная изменчивость морфологических характеристик коронарных артерий / Т. С. Жарикова, В. Е. Милюков, В. Н. Николенко // Ученые записки СПбГМУ им. И. П. Павлова. − 2015. − Т. XXII, № 4. − С. 80–83.
- 4. Клинический случай аномального отхождения левой коронарной артерии от легочной артерии / О. Г. Герасимова [и др.] // Российский кардиологический журнал. -2022. -№ 27(S6). C. 47.
- 5. Anatomical variations of the left coronary artery: a cadaveric and radiological study / D. Hanan [et al.] // Eur. J. Anat. 2021. Vol. 25(4). P. 463–472.
- 6. Heart Disease and Stroke Statistics 2023 Update: A Report From the American Heart Association / C. W. Tsao [et al.] // Circulation. 2023. Vol. 147(8). P. e93–e621.
- 7. World Heart Report 2023: Confronting the World's Number One Killer / M. Di Cesare [et al.] // World Heart Federation. Geneva, Switzerland. 2023. 52 p.

АНАТОМИЧЕСКОЕ ОБОСНОВАНИЕ КЛАССИФИКАЦИИ ОСТЕОАРТРОЗА

Герасимова А. Ю., Стрижков А. Е.

Первый Московский государственный медицинский университет имени И. М. Сеченова, Российская Федерация

Остеоартроз (OA) Актуальность: является ведущей проблемой инвалидности у пожилых людей: инициированное повреждение различных и развитие суставов OA обусловлены различными патофизиологическими процессами, прогрессирующими с возрастом [1, 2]. В определении ОА многими авторами как правило заложено следующее: «Остеоартроз – заболевание синовиальных суставов, характеризующееся дегенерацией суставного (гиалинового) хряща с вторичными изменениями в прилегающей кости» [5]. Однако среди суставов, подверженных распространены те, что полностью лишены суставного хряща (поясничные межпозвоночные диски [3]) или те, в которых патология затрагивает фиброзный хрящ (височно-нижнечелюстной сустав), подтверждая, заболевание не затрагивает исключительно суставной хрящ. Этиологию и прогрессирование ОА в целом не следует рассматривать как неизменно обусловленные повреждением какой-то одной ткани (суставного хряща), наоборот – как возможно характеризуемые патологическим состоянием любой из тканей пораженного органа (в том числе связок, капсулы, субхондриальной кости, мениска и т.д.) [4]. Чтобы верно судить о прогрессировании ОА в механизм определенном суставе, необходимо сопоставить заболевания с тканями, которые имеют отношение к нарушению. Согласно частоте встречаемости остеоартроза среди всего многообразия суставов,