D, у 46,21% среднее содержание витамина D оценивается как недостаточное. B 9,8% случаев диагностирован дефицит фолиевой кислоты, в 5,3% случаев определен дефицит витамина B_{12} . Полученные данные подтверждают значимость приема витамина D на этапе подготовки к беременности у женщин C привычным невынашиванием, а определение стартовой концентрации витаминов в сыворотке крови позволяет обосновать пациентам необходимость приема данных препаратов, избежать полипрагмазии, персонифицировать прегравидарную подготовку и усилить мотивационную приверженность к терапии.

ЛИТЕРАТУРА

- 1. Джобава, Э. М. Прегравидарная подготовка как скрининг и рутинная практика. Международный опыт и клинические рекомендации / Акушерство и гинекология. 2016. № 11. С. 16—21. http://dx.doi.org/10.18565/aig.2016.11.16-21.
- 2. Доброхотова, Ю. Э. Комплексная прегравидарная подготовка реальный путь улучшения перинатальных исходов / Ю.Э. Доброхотова, Л.С. Джохадзе // Проблемы репродукции. 2019. № 25 (6). С.38–43.
- 3. Витамин D и репродуктивное здоровье женщин / С.Ю. Калинченко, М.И. Жиленко, Д.А. Гусакова [и др.] // Проблемы репродукции. 2016. N_2 22 (4). С. 28—36.
- 4. ВОЗ. Оценка фолатного статуса у различных групп населения по концентрации фолата в сыворотке крови и красных кровяных клетках. Информационная система данных о содержании витаминов и минералов в продуктах питания. Женева (ВОЗ), 2012. http://www.who.int/iris/bitstream/10665/75584/4/ WHO_NMH_NHD_EPG_12.1_rus.pdf.
- 5. Ушкалова, Е. А. Новые подходы к диагностике и лечению В12-дефицитных состояний / Е.А. Ушкалова, С.К. Зырянов, К.Э. Затолочина // Профилактическая медицина. -2021. -№24 (3). -C.59–66. https://doi.org/10.17116/profmed20212403159.

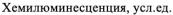
АНТИОКСИДАНТНЫЙ ПРОФИЛЬ ПЛАЗМЫ КРОВИ ПРИ ОСТРОМ КОРОНАРНОМ СИНДРОМЕ

Данилова Т.В.¹, Дмитриева Д.С.¹, Баранов А.П.¹, Проскурнина Е.В.² Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им.

М.В. Ломоносова», Москва, Россия

²Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр имени академика Н.П. Бочкова», Москва, Российская Федерация

Актуальность. Окислительный стресс – это нарушение баланса между содержанием свободных радикалов и антиоксидантной системой организма в пользу первых. У человека окислительный стресс является важным звеном


патогенеза многих серьёзных заболеваний, в том числе и болезней сердечнососудистой системы. Острый коронарный синдром (ОКС) без подъема сегмента ST объединяет такие клинические состояния как инфаркт миокарда и нестабильная стенокардия. Для выбора оптимальной тактики лечения требуется проведение дифференциальной диагностики, в этом могут быть полезны маркеры воспаления и оксидативного стресса [3]. Изучение антиоксидантных профилей плазмы крови поможет разработке новых подходов сопутствующей антиоксидантной терапии ОКС [4, 5].

Цель. Оценка антиоксидантного профиля плазмы крови пациентов с острым коронарным синдромом.

Материалы и методы исследования. В исследование были включены 42 пациента (средний возраст $61,5\pm10,8$ года). Критерии включения: пациенты старше 18 лет, диагноз ОКС с подъемом ST или ОКС без подъема ST, ОКС с подъемом ST длительностью не более 24 часов, ОКС без подъема ST (нестабильная стенокардия или инфаркт миокарда) с давностью клинических проявлений не более 48 часов и наличием ишемии по данным электрокардиограммы. Критерии исключения: пациенты до 18 лет, наличие острых инфекционных процессов, злокачественных новообразований в поздних стадиях, аутоиммунные заболевания.

Все пациенты были разделены на три группы; с входным диагнозом ОКС с подъемом ST (n=10, средний возраст 57,8±7,9 года), с диагнозом ОКС без подъема ST (n=12, средний возраст 61,9±13,7 года), с верифицированной ишемической болезнью сердца (ИБС): стабильной стенокардией II-III функциональных классов (n=20, средний возраст 62,7±8,1 года).

хемилюминесценции Измерения проводили помощью хемилюминометра Lum-1200 (ДИСофт, Россия) при 37°C. Антиоксидантные профили водорастворимой фракции плазмы оценивали с помощью люминолзависимой хемилюминесценции по методике [1]. Раствор люминола 1 мМ (Sigma, США) и 2,2'-азо-бис(2-амидинопропана) дигидрохлорида (АБАП; Fluka, Германия) концентрации 50 ммоль/л готовили путем растворения навесок в фосфатном буферном растворе (100 мМ KH_2PO_4 , рН 7,4, Sigma, США). Образцы плазмы хранили при -20° и непосредственно перед анализом разбавляли в 10 раз дистиллированной водой. Общий объем кюветы составлял 1,000 мл. Смесь АБАП и люминола (конечные концентрации 2,5 мМ и 2 мкМ соответственно) добавляли буферный раствор (рН 7,4) при 37°С. В Хемилюминесценцию регистрировали до достижения стационарного уровня (I_0) , далее добавляли аликвоту разбавленной плазмы крови. Регистрацию выполняли до достижения нового стационарного уровня (I) (рисунок 1).

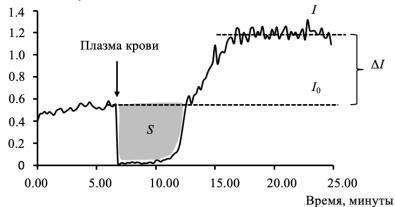


Рисунок 1 — Антиоксидантный профиль плазмы крови пациента с ОКС с подъемом сегмента ST, стрелка указывает момент добавления образца

По хемилюминограммам были определены два параметра: площадь под кривой хемилюминесценции (S), отражающая емкость сильных антиоксидантов, прежде всего мочевой кислоты («уратная» емкость) и разность между конечным и начальным стационарными уровнями хемилюминесценции (ΔI), отражающая уровень меркаптоальбумина («альбуминовая» емкость). Референсные интервалы для здоровых доноров (от 18 до 65 лет, n=110) были определены ранее, усл.ед.: S [195–405], ΔI [1,2–2,2].

Размер групп ранее не определяли. Для статистического анализа использовали программу STATISTICA для Windows v.10.0 (StatSoft Inc., США). Данные представлены в виде $x\pm SD$ (x – среднее арифметическое, SD – среднеквадратичное отклонение). Сравнительный анализ двух независимых групп проводили с использованием параметрического t-критерия.

Результаты и обсуждение. Качественно антиоксидантный профиль плазмы крови пациентов с ИБС и ОКС соответствовал антиоксидантному профилю плазмы крови здоровых доноров (рис. 1). Количественно «уратная» емкость (S) находилась в пределах референсного интервала для всех трех подгрупп. Параметр ΔI характеризует уровень тиоловых групп альбумина (меркаптоальбумина) и, косвенно, состояние системы глутатиона. Уменьшение ΔI соответствует состоянию «тиолового» окислительного стресса, который был выражен Снижение тиоловой фракции BO всех трех подгруппах. антиоксидантного профиля в группе ИБС по сравнению с группами ОКС было статистически незначимым. Параметры антиоксидантного профиля приведены в таблице.

Таблица — Описательная статистика параметров антиоксидантного профиля плазмы крови по подгруппам

Группы	S	ΔI
	\bar{x} (SD)	\bar{x} (SD)
ИБС: стабильная стенокардия II — III ФК ($n = 20$)	279 (46)	0,87 (0,39)
ОКС без подъема ST (n = 12)	304 (68)	0,76 (0,37)
ОКС с подъемом ST ($n = 10$)	297 (64)	0,75 (0,26)

В данной работе была оценена емкость только водорастворимых антиоксидантов, но не жирорастворимой части, которая реагирует на перекисное окисление липидов, в то время как по данным литературы, большая часть исследований посвящена именно жирорастворимому антиоксидантному звену. Показано, что у пациентов с ИБС и ОКС были значительно повышены уровни малонового диальдегида, снижены концентрации витамина С, восстановленного глутатиона, активность глутатионпероксидазы эритроцитов и общая антиоксидантная способность плазмы по сравнению со здоровыми индивидуумами. Статистически значимой разницы данных в группах ИБС и ОКС не было [2].

Выводы. «Уратная» фракция антиоксидантного профиля находилась в пределах нормы как для пациентов с ИБС, так и для пациентов с ОКС, однако «тиоловая» фракция антиоксидантного профиля была снижена во всех трех группах. Предположительно, эти изменения вызваны хронической. Таким образом, можно сделать вывод, что при ИБС и ОКС может быть полезной антиоксидантная терапия, направленная на восстановление «тиолового» баланса и уменьшение окислительного стресса при этих состояниях.

ЛИТЕРАТУРА

- 1. Созарукова, М. М. Изменения в кинетике хемилюминесценции плазмы как мера системного окислительного стресса в организме человека / М.М. Созарукова [и др.]// Биофизика. 2016. Т. 61, N2. С.337–344.
- 2. Bastani, A. Oxidant and antioxidant status in coronary artery disease / A. Bastani // Biomed Rep. − 2018. − Vol. 9, № 4. − P.327–332.
- 3. Centurión, O. A. Serum biomarkers and source of inflammation in acute coronary syndromes and percutaneous coronary interventions / O.A. Centurión // Cardiovasc. Revasc. Med. 2016. Vol. 17, N 2. P.119–128.
- 4. Rymer, J. A. Failure to launch: targeting inflammation in acute coronary syndromes / J.A. Rymer // JACC Basic Transl. Sci. 2017. Vol. 2, N 4. P. 484–497.
- 5. Wang, H. Immune and inflammation in acute coronary syndrome: molecular mechanisms and therapeutic implications [WEB resource] / H. Wang // J. Immunol. Res. 2020.- Vol. 2020.- e4904217.

ВЛИЯНИЕ КИНЕЗОТЕРАПЕВТИЧЕСКИХ СРЕДСТВ НА ПСИХОЛОГИЧЕСКОЕ СОСТОЯНИЕ ПАЦИЕНТОВ ПОСЛЕ КАРДИОХИРУРГИЧЕСКОГО ВМЕШАТЕЛЬСТВА

Девина Е.А., Ванда А.С., Малькевич Л.А.

УО «Белорусский государственный медицинский университет», Минск, Республика Беларусь

Актуальность. Острый коронарный синдром сопровождается не только тяжелой симптоматикой ишемии миокарда, сердечной недостаточностью, но и развитием тревожно-депрессивных расстройств, которые снижают качество жизни и повышают вероятность неблагоприятного исхода заболевания.