морфин-алкогольная Комплексная интоксикация приводила не существенным изменениям содержания исследованных параметров дофаминергической системы в мозжечке, где повышался только уровень 3,4-ДОФУК. После трехсуточной отмены комплексного воздействия обоими ПАВ (4-я группа) в данном регионе мозга выявлены признаки ускорения дофамина, что подтверждается ростом концентрации нейромедиатора и 3,4-ДОФУК по сравнению с контролем. Это согласуется с аналогичными изменениями в среднем мозге в тех же экспериментальных условиях. В отдаленные сроки отмены введения морфина и этанола (7 суток) в мозжечке сохранялся повышенный уровень дофамина по сравнению с контролем.

Выводы. Таким образом, при морфин-алкогольном постинтоксикационном синдроме отмечается изменение функционального состояния дофаминергической нейромедиаторной системы головного мозга, что подтверждается отклонениями содержания нейромедиатора и его метаболитов. Эти изменения имеют региональную специфику и зависят от длительности отмены морфина и этанола.

ЛИТЕРАТУРА

- 1. Лелевич, С. В. Состояние нейромедиаторных систем в некоторых отделах головного мозга крыс в динамике алкогольного постинтоксикационного синдрома / С. В. Лелевич, Е. М. Дорошенко // Экспер. и клин. фармакол. -2011. № 2. С. 29-33.
- 3. Сиволап, Ю. П. Аминокислотные расстройства: мишени и средства терапии / Ю. П. Сиволап // Наркология. -2014. -№ 3. -C. 34-38.

ТРАНСЛОКАЗЫ: 7-Й КЛАСС ФЕРМЕНТОВ

Лукашевич А.С., Леднёва И.О.

УО «Гродненский государственный медицинский университет», Гродно, Республика Беларусь

Актуальность. Современные классификация и номенклатура ферментов утверждены на V Международном биохимическом конгрессе в 1961 г. в Москве. В соответствии с этой классификацией все ферменты делятся: — на 6 классов. Однако стало очевидно, что ни один из них не может описать важную группу ферментов, катализирующих движение ионов или молекул через мембраны или их разделение внутри мембран. В августе 2018 г. учеными Университета Маккуори был предложен 7-й класс ферментов — Транслоказы, объединивший мембранные ферменты, функцией которых является перенос ионов. К ферментам этого класса не относятся каналы, изменяющие конформацию между открытым и закрытым состоянием в ответ на какое-либо

воздействие, а также транспортеры, которые не зависят от фермент-катализируемых реакций.

Цель. Рассмотреть строение и биологические функции основных траснлоказ.

НАДН-дегидрогена́зный комплекс — первый мультибелковый комплекс дыхательной цепи переноса электронов. Этот комплекс играет центральную роль в процессах клеточного дыхания и окислительного фосфорилирования: почти 40 % протонного градиента для синтеза АТФ создаются именно этим комплексом. У млекопитающих этот фермент состоит из 44 субъединиц. Электронная микроскопия показала, что комплекс I (как из бактерий, так и из митохондрий) имеет характерную L-образную форму. Катализирует реакцию восстановления убихинона до убихинола при переносе протонов из матрикса в межмембранное пространство митохондрии. Мутации в генах субъединиц комплекса I могут привести к митохондриальным заболеваниям, например, к синдрому Лея. Недавние исследования выявили необычную роль комплекса I в работе мозга. Комплексы I и II играют ключевую роль в процессах, влияющих на старение и на продолжительность жизни.

Цитохро́м-bc₁-ко́мплекс — мультибелковый комплекс дыхательной цепи переноса электронов и важнейший биохимический генератор протонного градиента на мембране митохондрий. Катализирует перенос электронов с цитохрома с на кислород с образованием воды. События, которые при этом происходят, известны как Q-цикл, который был постулирован Питером Митчеллом в 1976 году. Мутации в генах Комплекса III обычно приводят к непереносимости физических упражнений.

 $AT\Phi$ -синтаза — повсеместно распространенный мембранный фермент, играющий ключевую роль в биологическом энергетическом обмене. Имеющаяся в митохондриях $AT\Phi$ -синтаза F_1F_0 очень хорошо исследована. Компонент F_0 — трансмембранный домен, компонент F_1 находится вне мембраны, в матриксе. Катализирует реакцию переноса протонов из межмембранного пространства митохондрии в матрикс с образованием при этом молекулы $AT\Phi$ из $AJ\Phi$ и неорганического фосфата. В 60-70 годах XX века Пол Бойер предположил, что синтез $AT\Phi$ связан с изменениями конфигурации $AT\Phi$ -синтазы. У аэробных бактерий в нормальных условиях $AT\Phi$ -синтаза, как правило, работает в обратном направлении. ДОБАВИТЬ ИН Φ У

 $Na+/K+-AT\Phi a = - была открыта Йенсом Скоу в 1957 году. <math>Na^+/K^+$ АТФаза является ферментом наружной мембраны клеток всех тканей животных. Na⁺/K⁺-ATФаза – мембраносвязанный фермент, участвующий во многих жизненно важных функциях клеток млекопитающих, вовлечен в процессы нервной передачи, транспорта электролитов, поддержания электрического градиента клеточной мембраны, регуляция объёма каждой клетки. Функциональная единица фермента состоит из двух полипептидных (альфа-субъединицы) И меньшей (бета-субъединицы), цепей: большей входящих в состав ферментного комплекса в соотношении 1:1. Катализирует перенос 3 Na⁺ во внеклеточное пространство и 2 K⁺ во внутриклеточное пространство. В итоге во внеклеточной среде создается высокая концентрация ионов Na⁺, а внутри клетки – высокая концентрация K⁺. Эта разность концентраций используется в клетках при проведении нервного импульса. Активность фермента значимо ниже у пациентов с СД по сравнению с лицами без диабета (p<0,05). Её активность не имела зависимости от возраста и пола обследованных лиц, оставалась низкой при всех сроках заболевания и снижалась c увеличением продолжительности недостоверно Изучаемый показатель имеет зависимость от уровня HbA1c, повышения активности сиалидазы эритроцитов, уровня нитритов и нитратов крови. Активность Na⁺/K⁺-ATФазы отражает степень метаболических нарушений и дисфункции эндотелия при СД.

 $\mathbf{H}^{+}/\mathbf{K}^{+}$ **АТФаза** – водородно-калиевая аденозинтрифосфатаза является протонной помпой и играет важнейшую роль при секреции соляной кислоты в желудке. H^+/K^+ -АТФаза состоит из двух субъединиц, α (АТР4А) и β (АТР4В). Н+/К+-АТФаза транспортирует ион водорода Н+ из цитоплазмы париетальной клетки в полость желудка через апикальную мембрану в обмен на ион калия К⁺, который она переносит внутрь клетки. При этом оба катиона транспортируются против электрохимического градиента. Источником энергии для транспорта служит гидролиз молекулы АТФ. Одновременно с ионами водорода в просвет желудка путём активного транспорта против градиента переносятся ионы хлора Cl⁻. Входящие в клетку ионы К⁺ покидают её по градиенту концентрации вместе с ионами С1 через апикальную мембрану париетальных клеток. Таким образом в просвет желудка при участии Н+/К+-АТФазы выделяется соляная кислота в виде ионов Н и СГ, а ионы К возвратным образом перемещаются через мембрану. Ингибиторы протонной помпы наиболее эффективными И современными лекарственными препаратами, предназначенными для лечения кислотозависимых заболеваний желудка, двенадцатиперстной кишки и пищевода, блокирующими протонную помпу $(H^+/K^+-AT\Phi a y)$ обкладочных (париетальных) клеток слизистой оболочки желудка и уменьшающие, таким образом, секрецию соляной кислоты.

Карнитин-ацилкарнитинтранслокаа — митохондриальный белокпереносчик. Внутренняя мембрана митохондрий не проницаемая для многих жирных кислот, в том числе и в виде ацилов карнитина. Для её прохождения существует белок-переносчик — карнитин-ацилкарнитинтранслоказа, который способен транспортировать ацилированный карнитин внутрь матрикса и молекулы свободного карнитина из матрикса в межмембранное пространство посредством антипорта.

Дефицит карнитин-ацилкарнитинтранслоказы представляет собой опасное для жизни наследственное нарушение окисления жирных кислот, которое проявляется в неонатальный период и сопровождается тяжёлой гипокетотической гипогликемией, гипераммониемией, кардиомиопатией и/или аритмией, дисфункцией печени, слабостью скелетных мышц и энцефалопатией. Очень опасна у новорождённых, так как среди них наблюдается высокая летальность. За дефицит САСТ отвечают мутации гена SLC25A20. Хотя L-

карнитин поступает в организм экзогенно в качестве компонента рациона, а также может синтезироваться эндогенно, данные свидетельствуют о первичных и вторичных дефицитах карнитина, который может быть приобретен, например, в результате врожденной ошибки обмена веществ. Недоношенные дети также подвержены риску развития дефицита карнитина из-за нарушения синтеза и недостаточной резорбции почечных канальцев. Другие состояния, связанные с дефицитом L-карнитина включают рак, диабет, болезнь Альцгеймера, патологии сердца.

объединяет мембранные ферменты, транслоказ имеющие различное строение и различные биологические функции. Основной их функцией является «катализировать движение ионов или молекул через мембраны или их разделение внутри мембран». Резюмируя всё вышесказанное также можно отметить, что помимо основной функции транслоказ, у них имеются свои специфические, к примеру: НАДН-дегидрогеназный комплекс – центральная роль в процессах клеточного дыхания и окислительного фосфорилирования, Цитохром-bc1-комплекс – генератор протонного градиента перенос мембране митохондрий, АТФ-синтаза протонов межмембранного пространства в матрикс митохондрий, Na⁺/K⁺-ATФаза – нервная передача и регуляция объёма каждой клетки, H⁺/K⁺ ATФаза – продукция соляной кислоты.

ЛИТЕРАТУРА

- 1. Международный союз биохимии и молекулярной биологии. Новый класс ферментов: транслоказы. IUBMB NEWS (август 2018).
- 2. Манувера, В.А. Исследование роли сигнальных пептидов в транслокации рекомбинантных белков в периплазматическое пространство клеток Escherichia coli на модели энтеротоксинов Staphylococcus aureus / В. А. Манувера [и др.] // Биотехнология. 2008. № 6. С. 3-14.
- 3. Зайцева, Л.Г. Импорт белков в митохондрии / Л. Г. Зайцева, Т. В. Овчинникова, В. А. Гринкевич // Биоорганическая химия. 2000. Т. 26, N 9. С. 643-661.

ЛАКТОФЕРРИН И АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ГРУДНОГО МОЛОКА ЖЕНЩИН Г. ОРЕНБУРГА

Мачнева И.В., Лебедева Е.Н., Карнаухова И.В.

Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный медицинский университет", Оренбург, Российская Федерация

Актуальность. Лактоферрин (ЛФ) присутствует в различных биологических жидкостях, однако наибольшее его содержание отмечается в молозиве и молоке. В количественном отношении — это второй белок грудного молока (ГМ), уступающий только казеинам. Лактоферрин представляет собой полифункциональный гликопротеин, который наряду с основной функцией