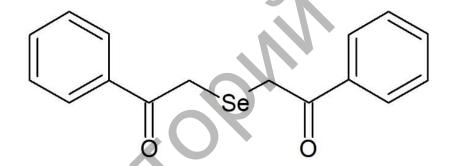
СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ДИАЦЕТОФЕНОНИЛСЕЛЕНИДА В РАСТВОРАХ, МОДЕЛИРУЮЩИХ БИОЛОГИЧЕСКИЕ ЖИДКОСТИ ОРГАНИЗМА С РАЗЛИЧНЫМ ЗНАЧЕНИЕМ РН


Гусельников П.И. ¹, Бородулин Я.В. ²

¹ Институт тонкой химической технологии им. М.В.Ломоносова (МИТХТ им. М.В.Ломоносова) ФГБОУ ВО «МИРЭА — Российский технологический университет» Минобрнауки России (РТУ МИРЭА)

²Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр имени академика Н.П. Бочкова» (ФГБНУ «МГНЦ»), Москва, Российская Федерация

Актуальность. Диацетофенонилселенид (ДАФС) является действующим веществом препарата Селенобел, обладающего антиоксидантными свойствами и предназначенного для повышения эффективности химиотерапии онкологических пациентов [1].

Структурная формула представлена на рисунке. 1.

Риунок 1 – Структурная формула диацетофенонилселенида

Препарат ДАФС может быть исследован как биодобавка. В то же время интерес представляет физико-химическое исследование этого вещества, моделирующих биологические жидкости с разной концентрацией HCl. Известно, что рН принимает следующие значения в биологических жидкостях организма: слюна- 6,8 ед. рН, желудочный сок- 1-2 ед. рН, кислотность тонкого кишечника- 8-9 ед. рН, сыворотка крови- 7,4 ед. рН.

Материалы и методы. Использовали спектрофотометр ПЭ-5400 УФ. Кювета с толщиной слоя 10 мм. ДАФС хорошо растворим в малополярных органических растворителях, подсолнечном масле (20 г на 1 л) и практически нерастворим в воде (0,003 г на 1000 мл). Ацетонитрил (ХЧ, Экос-1)— модель подсолнечного масла. Исходный раствор ДАФС ($C_{\text{ДАФС}} = 3.15*10^{-3} \, \text{M}$) готовили растворением навески препарата (0,01 г) в 10 мл ацетонитрила. В кювету с 5 мл ацетонитрила добавляли 0,04 мл этого раствора и 5 раз 0,1 мл НСІ (ОСЧ, СигмаТек) с концентрацией 0,2 М. Конечная концентрация соляной кислоты в растворе составила 2 * 10 $^{-2}$ М.

Результаты собственных исследований. Обнаружено изменение спектра поглощения ДАФС, смещение длины волны максимума с 243 нм на 1 нм (244 нм), появление изобестической точки на 249 нм (рис. 2, 3. Оптическая плотность длины волны максимума уменьшается, что связано с разведением исходной концентрации препарата. Добавка соляной кислоты объемом 0,1 мл увеличивала свою концентрацию в кювете на 0,004 М, так как 0,2 М НС1 разбавлялась в 50 раз при перенесении 0,1 мл в 5 мл раствора. В таблице 1 представлены объемы соляной кислоты, оптические плотности на длине волны 243 нм.

При изучении спектра ДАФСа в ацетонитриле при добавлении воды без соляной кислоты (контрольный образец) смещение длины волны осталось, а изобестической точки не было. Смещение максимума укладывается в погрешность прибора и связано с тем, что вода более полярный растворитель, чем ацетонитрил и ДАФС в более полярном растворителе имеет более большую длину волны максимума поглощения (таблица 1).

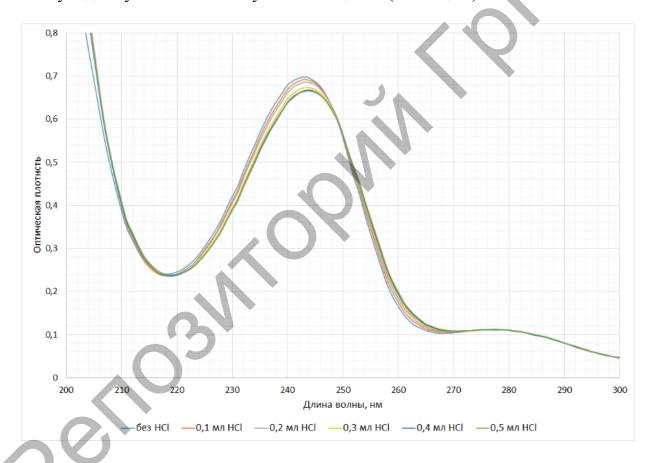


Рисунок 2 — Спектры поглощения ДА Φ С в CH3CN при добавлении в раствор 0.2~M~HCl

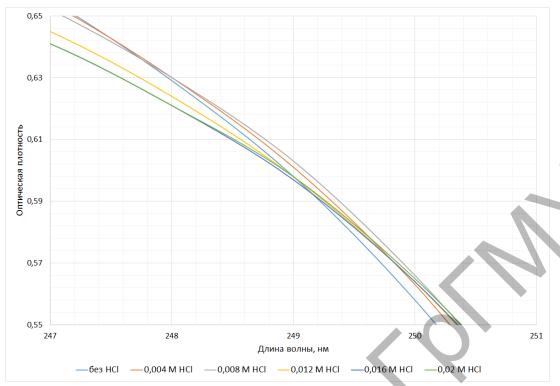


Рисунок 3 — Изобестическая точка в спектре ДАФС в ацетонитриле с HCl на длине волны $\lambda = 249$ нм

Таблица 1 — Спектр поглощения ДАФС в максимуме, $\lambda = 243$ нм, при

добавлении разных объемов соляной кислоты

V _{0,2 M HCl} , мл	A, o. e. $\lambda = 243 \text{ HM}$
0	0,698
0,1	0,692
0,2	0,686
0,3	0,673
0,4	0,666
0,5	0,664

Выводы. Спектр диацетофенонилселенида не изменяется при добавлении аликвот соляной кислоты, что указывает на сохранение в целом структуры этого вещества в растворах с высокой концентрацией ионов водорода. В то же время наблюдается изобестическая точка при длине волны 249 нм, что вероятнее всего указывает на появление изомерной формы ДАФС.

ЛИТЕРАТУРА

1. Физико-химические свойства и аналитические методы контроля диацетофенонилселенида — субстанции для производства препарата Селенобел® / Н.И. Атрахимович [и др.] // Рецепт. — 2012. — № 6. — С. 90-100.