- al.] // Reprod. Toxicol. 2019. Vol. 87. P. 11-20. doi: 10.1016/j.reprotox.2019.04.006.
- 9. Gòdia, M. A history of why fathers' RNA matters / M. Gòdia, G. Swanson, S. A. Krawetz // Biol. Reprod. 2018. Vol. 99 (1). P. 147-159. doi: 10.1093/biolre/ioy007.
- 10. Alterations in sperm RNAs persist after alcohol cessation and correlate with epididymal mitochondrial dysfunction [Electronic resource] / A. N. Roach [et al.] // Andrology. 2023. P. 1-12. doi: 10.1111/andr.13566. Mode of access: https://onlinelibrary.wiley.com/doi/10.1111/andr.13566. Date of access: 03.10.2023.
- 11. Altered non-coding RNA profiles of seminal plasma extracellular vesicles of men with poor semen quality undergoing in vitro fertilization treatment / O. A. Oluwayiose [et al.] // Andrology. 2023. Vol. 11 (4). P. 677-686. doi: 10.1111/andr.13295.
- 12. Chastain, L. G. Alcohol effects on the epigenome in the germline: Role in the inheritance of alcohol-related pathology / L. G. Chastain, D. K. Sarkar // Alcohol. 2017. Vol. 60. P. 53-66. doi: 10.1016/j.alcohol.2016.12.007.

АНАЛИЗ ПОКАЗАТЕЛЕЙ СТВОЛОВОГО АКУСТИЧЕСКОГО ВЫЗВАННОГО ПОТЕНЦИАЛА У ПАЦИЕНТОВ С АЛКОГОЛЬНОЙ ЗАВИСИМОСТЬЮ

Березина И.Ю., Михайлов А.Ю., Горецкая Т.А.

ФГБУ «НМИЦ психиатрии и наркологии им. В.П. Сербского», Минздрава России, Москва, Россия

Актуальность. Метод стволового акустического вызванного потенциала зарекомендовал себя как высокоточный универсальный И нейрофизиологический метод, используемый диагностике различных В нарушений слуховой системы и центральной нервной системы (ЦНС). Это единственный вызванный потенциал, который может дать информацию о функциональном состоянии структур ствола головного мозга, включая ядра стволовой части слухового анализатора и восходящие пути слуховой системы. Широкий спектр применения САВП обусловлен его следующим преимуществом: он является наиболее стабильным И **VCTOЙЧИВЫМ** метаболическим, токсическим нарушениям и даже к влиянию наркотических препаратов [4, 6-7]. Это свойство делает САВП незаменимым в диагностике неврологических расстройств У пациентов, злоупотребляющих психоактивными веществами (ПАВ). Одной из наиболее распространенных зависимость алкоголя. Чрезмерное форм зависимости является otдлительной употребление алкоголя оказывает пагубное воздействие на ЦНС, вызывая изменения в структуре и функции различных мозговых структур, включая стволовые образования. Несмотря на серьезность данной проблемы,

исследований, посвященных изучению влияния алкогольной зависимости на функциональное состояние стволовых образований, крайне мало. В связи с этим представляется значительный интерес провести оценку состояния понто-мезенцефальных стволовых структур у лиц с алкогольной зависимостью с использованием метода САВП.

Цель. Оценить функциональное состояние стволовых образований понтомезенцефального уровня у пациентов с алкогольной зависимостью.

Методы исследования. Проанализированы результаты САВП, которые были получены от 89 пациентов (65 мужчин, 24 женщины) в возрасте от 21 до 57 лет (ср возр. $-37,65\pm8,50$), которые находились в клинических отделениях Национального научного центра наркологии - филиала Национального медицинского исследовательского центра психиатрии и наркологии им. В.П. Сербского с установленными диагнозами, согласно МКБ-10: F10.2, F10.212, F10.3. Записи САВП проводилась на 5-7 сутки от момента поступления в помощью компьютерного Регистрацию САВП проводили с нейрофизиологического комплекса для регистрации ЭЭГ, ВП и ЭМГ «Нейрон-Спектр-5» ПОД **управлением** программы «Нейро-МВП.Net» «Нейрософт» (г. Иваново, Россия). Методика регистрации САВП выполнялась Международной рекомендациям Федерации клинических нейрофизиологов: полоса пропускания частот усилителя устанавливалась в диапазоне 100-2000 Гц. Ответ регистрировался от активного электрода, расположенного в точке Сz по схеме 10-20% с референтами на мочках ушей (А1, А2). Для подачи звукового сигнала в виде серии щелчков использовались головные телефоны TDH 39/49 10 Ом, а звуковой сигнал в виде щелчка (серии щелчков), длительностью 0,1 мс, интенсивностью 100 дБ SPL подавался переменно: сначала с одной стороны, потом с другой. Частота подачи стимула составляла 10 Гц, при этом в каждое ухо подавалось две серии щелчков по 2000 стимулов. Анализировалась общая конфигурация ответа, пиковые латентности (ПЛ) трёх наиболее стабильных (реперных) колебаний: I, III, V компонентов, а также межпиковые интервалы I-III, III-V, I-V. С учётом общеизвестной патологические отклонения определялись практики, ПО межпиковым интервалам I-III компонентов (время периферического проведения), III-V (время центрального проведения) I-V компонентов (длительность ответа). Контрольную группу составили 25 испытуемых (13)женщин), ср. возр. составлял $-32,4\pm7,46$, которые были сопоставимы по возрасту, полу, также не имевших В анамнезе психических неврологических расстройств, не страдающих алкогольной зависимостью. Критерии невключения: в работу не включались пациенты, имели патологию системы слуха, как острую, так и хроническую: пациенты с пациенты принимавшие отитами по данным анамнеза, тугоухостью, принимающие ототоксические препараты, пациенты, a также предъявляли жалобы на снижение слуха или отказавшиеся от участия в исследовании.

Полученные данных обрабатывались с использованием пакета Statistica 13.0 for Windows. Оценивали параметры (средние, стандартные отклонения) распределений величин ПЛ и МПИ САВП. Достоверными отклонениями считалось превышение средних показателей контрольной группы более чем на 2.0, что соответствует достоверности p<0,05.

Результаты и их обсуждение. При анализе показателей САВП у обследуемых группы контроля конфигурация ответа была сохранена, при этом отмечалось отчетливое выделение всех компонентов (с I по V) ответа с сохранением показателей ПЛ, МПИ и амплитуды ответа (таб.1), соответствующих значениям нормы.

Таблица 1 — Показатели пиковых латентностей и межпиковых интервалов САВП в контрольной группе (M±m), n=25

eribir b komponision rpjimo (ivi-ini), ir 20								
Пиковая латентность (мс)								
компоненты	I	III	V					
стимуляция слева	1,65±0,08	3,63±0,11	5,76±0,15					
стимуляция справа	1,67±0,12	3,57±0,13	5,75±0,18					
Межпиковые интервалы								
	I-III	III-V	I-V					
стимуляция слева	2,10±0,90	1,81±0,18	3,91±0,19					
стимуляция справа	2,03±0,11	1,87±0,18	3,90±0,23					
Амплитуда V/I (мкВ)								
стимуляция слева	X	1,82±0,37						
стимуляция справа		1,81±0,39						

Анализ показателей САВП у пациентов с алкогольной зависимостью показал, что в четверти наблюдений (26 человек) конфигурация САВП была сохранена. Показатели ПЛ и МПИ САВП укладывались в вариативный разброс показателей контрольной группы (таб.2) (подобная картина наблюдалась у пациентов с длительностью употребления алкоголя не более 5 лет), показатели амплитуды ответов отличались большой вариабельностью.

Во всех остальных случаях (63 пациента) отмечалось удлинение МПИ І-ІІІ при относительной сохранности показателей ПЛ основных компонентов САВП (таб. 3); амплитуда ответов при этом была очень вариабельной. Подобные изменения САВП отмечались у лиц с длительностью употребления алкоголя более 6 лет (12,68±3,56) (p<0,05).

Таблица 2 – Показатели пиковых латентностей (ПЛ) и межпиковых интервалов

(МПИ) САВП у пациентов с алкогольной зависимостью (М±m, n=26).

(WITH) CADITY HALLMENTOBE CARROLOGISHOU SUBJECTION (WI-III, II-20).						
	Пациенты с	Контрольная	Достовер-	Пациенты с	Контрольная	Достовер-
	алкогольной	группа	ность	алкогольной	группа	ность
	зависимостью	(n=25),	различий	зависимо-	(n=25),	различий
	стимуляция	стимуляция		стью	стимуляция	
	слева	слева		стимуляция	справа	
				справа		A
	1	2		3	4	
ПЛ І (мс)	1,69±0,06	1,65±0,08	p=1,8301	1,70±0,04	1,67±0,12	p=1,2478
ПЛ III (мс)	3,74±0,04	3,63±0,11	p=1,8036	3,78±0,09	3,57±0,13	p=0,1279
ПЛ V (мс)	5,83±0,09	5,76±0,15	p=0,0592	5,81±0,44	5,75±0,18	p=0,0521
МПИ І-ІІІ	2,12±0,07	2,10±0,90	p=0,4217	2,10±0,90	2,03±0,11	p=0,1179
МПИ III-V	1,99±0,16	1,81±0,18	p=0,2037	1,81±0,18	1,87±0,18	p=0,5143
МПИ I-V	4,00±0,25	3,91±0,19	p=0,4108	3,91±0,19	3,90±0,23	p=0,1563

Примечание: жирным цветом указаны достоверные значения с уровнем достоверности p < 0.05

Таблица 3 — Показатели пиковых латентностей (ПЛ) и межпиковых интервалов (МПИ) САВП у пациентов с алкогольной зависимостью (М \pm m), n=63)

	T '			\ <u>`</u>		
	Пациенты с	Контрольная	Достовер-	Пациенты с	Контрольная	Достовер-
	алкогольной	группа	ность	алкогольной	группа	ность
	зависимостью,	(n=25),	различий	зависимостью,	(n=25),	различий
	стимуляция	стимуляция		стимуляция	стимуляция	
	слева	слева		справа	справа	
	1	2		3	4	
ПЛ І (мс)	1,73±0,18	1,65±0,08	p=0,1167	1,76±0,13	1,67±0,12	p=0,1156
ПЛ III (мс)	3,98±0,19	3,63±0,11	p=0,0057	3,82±0,45	3,57±0,13	p=0,0053
ПЛ V (мс)	5,88±0,23	5,76±0,15	p=0,0851	5,83±0,07	5,75±0,18	p=0,0842
МПИ I-III	2,20±0,18	2,10±0,90	p=0,0058	2,10±0,16	2,03±0,11	p=0,0055
МПИ	1,95±0,06	1,81±0,18	p=0,0713	1,94±0,12	1,87±0,18	p=0,0811
III-V						
МПИ І-V	4,05±0,08	3,91±0,19	p=0,0089	4,04±0,23	3,90±0,23	p=0,0072

Примечание: жирным цветом указаны достоверные значения с уровнем достоверности p<0,05

Наше исследование показало, что у пациентов с алкогольной зависимостью в 71% случаев отмечаются нарушения показателей САВП, что согласуется с данными литературы [1-3, 5-8]. Наиболее распространенным отклонением в показателях САВП стало изменение МПИ І-ІІІ при относительной сохранности І, ІІІ, V компонентов при звуковой стимуляции как

левого, так и правого уха. В частности, увеличение МПИ I-III, отражающее время периферического проведения, в большинстве случаев (63%), сопровождалось достоверным увеличением времени центрального проведения, что согласуется с рядом научных исследований [1, 3, 10]. Увеличение МПИ I-III у лиц с алкогольной зависимостью, скорее всего, связано со снижением проводниковой способности слухового нерва (возможно демиелинизации), нежели с функциональным состоянием изолированного сегмента каудального отдела моста. Только в 8% случаев у лиц с алкогольной зависимостью отмечалось достоверное увеличение показателей ПЛ компонента, а также МПИ I-III, I-V, что, вероятно, отражает нарушение функционального состояния участка мозга на уровне верхней трети моста мозга – нижние бугры четверохолмия [9]. Подобные изменения, в большей степени, связаны с хроническим токсическим действием алкоголя функциональное состояние стволовых образований головного мозга.

Выводы. У лиц с алкогольной зависимостью в 71% случаев были выявлены нарушения показателей САВП. В 63% случаев у пациентов с алкогольной зависимостью выявлялись нарушения САВП, связанные с периферической частью слухового анализатора (нарушения МПИ І-ІІІ). Выявленные нарушения могут быть вызваны как демиелинизацией нерва, так и функциональным нарушением изолированного участка каудального отдела моста.

В 8% случаев у лиц с алкогольной зависимостью по данным САВП выявлялись нарушения функционального состояния значительной части активирующей системы уровне моста понто-мезэнцефального на И нарушения соединения. показателей САВП Отмеченные вероятно обусловлены хроническим действием алкоголя на функциональное состояние стволовых образований головного мозга, что приводит К проведения звукового сигнала.

Выявление нейрофизиологических нарушений, лежащих в основе генерации САВП у лиц с алкогольной зависимостью, позволит выявить ранние отклонения в проведении звукового сигнала по слуховым путям ствола головного мозга, что будет способствовать более глубокому пониманию нейрофизиологических механизмов алкоголизма и поможет разработать более эффективные стратегии лечения и профилактики.

ЛИТЕРАТУРА

- 1. Изменения параметров вызванного стволового слухового потенциала у больных алкоголизмом / Ю. Л. Арзуманов [и др.] // Рос. психиатр. журн. 2000. № 4. С. 19-22. edn: SBSWHD.
- 2. Функциональные нарушения подкорковых структур головного мозга у больных, употребляющих психоактивные вещества и у их детей / Ю. Л. Арзуманов [и др.] // Вопр. наркологии. 2008. № 1. С. 46-54. edn: OPCVRZ.

- 3. Показатели стволового акустического вызванного потенциала у пациентов с алкогольной зависимостью / И. Ю. Березина [и др.] // Вопр. наркологии. -2021. -№ 11 (206). C. 9-24. $doi: 10.47877/0234-0623_2021_11_9. <math>- edn: YKDZYL$.
- 4. Гресс, В. В. Обзор применения акустических вызванных потенциалов в современной клинической практике / В. В. Гресс // Политехн. молодеж. журн. -2019. -№ 7. С. 1-16. doi: 10.18698/2541-8009-2019-7-497. edn: IHSCDJ.
- 5. Begleiter, H. Auditory brainstem potentials in chronic alcoholics / H. Begleiter, B. Porjesz, C. L. Chou // Science. 1981. Vol. 211 (4486). P. 1064-1066. doi: 10.1126/science.7466379.
- 6. Chiappa K. H. Brainstem auditory evoked potentials in clinical neurology / K. H. Chiappa // Adv. Neurol. 1982. Vol. 32. P. 157-158.
- 7. Chiappa, K. H. Evoked potentials and clinical medicine (first of two parts) / K. H. Chiappa, A. H. Ropper // N. Engl. J. Med. 1982. Vol. 306, № 19. P. 1140-1150. doi: 10.1056/NEJM198205133061904.
- 8. Chu, N. S. Auditory brainstem response study of alcoholic patients / N. S. Chu, K. C. Squires // Pharmacol. Biochem. Behav. 1980. Vol. 13, suppl. 1. P. 241-244. doi: 10.1016/s0091-3057(80)80036-0.
- 9. Klemm, B. Acoustically evoked brain stem potentials in acute alcoholic intoxication / B. Klemm, W. Haas // Psychiatr. Neurol. Med. Psychol. (Leipz). $-1990.-Vol.\ 42,\ N\ 2.-P.\ 102-106.$
- Cumulative lifelong 10. Smith, E. S. alcohol alters auditory brainstem potentials / E. S. Smith, H. Riechelmann // Alcohol. Clin. Vol. 28, № 2004. 3. P. 508-515. doi: Exp. 10.1097/01.alc.0000117870.11317.92.

ДИАГНОСТИЧЕСКИЙ АЛГОРИТМ РАССТРОЙСТВ АУТИСТИЧЕСКОГО СПЕКТРА, АССОЦИИРОВАННЫХ С ПОЛИМОРФИЗМОМ ГЕНОВ ФОЛАТНОГО ЦИКЛА

Бизюкевич С.В.

УО «Гродненский государственный медицинский университет», Гродно, Беларусь

Актуальность. По данным главного внештатного детского психиатра Министерства здравоохранения Республики Беларусь Литвиновой О.С. (2023), за 2022 год в Республике Беларусь отмечается не только рост заболеваемости расстройств аутистического спектра (РАС) среди детского населения, но и количество детей инвалидов по причине расстройств в спектре аутизма: в структуре общей заболеваемости в Республике Беларусь РАС составили 5,2%, а в структуре первичной инвалидности – 6,73% на 10 тыс. детского населения,