ЧАСТОТА ГЕНЕТИЧЕСКИХ ПОЛИМОРФИЗМОВ У ЖЕНЩИН С ПРИВЫЧНЫМ НЕВЫНАШИВАНИЕМ БЕРЕМЕННОСТИ

Ганчар Е.П., Гутикова Л.В., Кажина М.В.

Гродненский государственный медицинский университет

Актуальность. К числу наиболее приоритетных направлений здравоохранения относятся важнейшая проблема практического акушерства – невынашивание беременности [1]. Одной из доказанных причин привычного невынашивания беременности является тромбофилия. К группе высокого риска по тромбофилическим осложнениям в акушерстве относят: дефицит AT III (снижение активности до уровня менее 70%), сочетанная гетерозиготная мутация гена протромбина и фактора V (мутация Лейден), гомозиготная мутация гена фактора V (мутация Лейден), гомозиготная мутация гена протромбина. В то же время полиморфизм генов других генетических систем (фолатного цикла, гены ангиогенеза, системы регуляции артериального давления) может не принимать непосредственного участия в патогенезе привычного невынашивания беременности, однако оказывать косвенное, хотя и не менее значимое влияние на предрасположенность к формированию патологического симптомокомплекса [2]. В связи с этим целесообразность исследования генов различных систем, ассоциированных с процессами беременности, у женщин с привычными выкидышами является несомненно актуальной, поскольку выявление высокого генетического риска потери беременности позволяет врачам назначать соответствующую терапию, в результате которой беременность сохраняется вплоть до успешных родов.

Цель. Изучить частоту полиморфизма генов системы гемостаза, ангиогенеза, фолатного цикла, системы регуляции артериального давления у пациентов с привычным невынашиванием беременности.

Методы исследования. Проведен анализ состояния здоровья 114 женщин с привычным невынашиванием беременности, наблюдавшихся в поликлинике УЗ «Гродненский клинический перинатальный центр» и в медицинском центре «Клиника женского здоровья». Обследование осуществлялось на прегравидарной подготовки пациентов привычным cневынашивнием беременности. Методом полимеразной цепной реакции (ПЦР) было проведено исследование генотипов 9 генов, в том числе: генов гемостаза, к которому относятся: F2 (G20210A) – ген II фактора свертывания крови (протромбин); F5 (G1691A) – ген V фактора свертывания крови (мутация Лейдена); F13A1 (Val34Leu) – ген XIII фактора свертывания крови; гена системы ангиогенеза – PAI-1 (4G/5G) – антагонист тканевого активатора плазминогена; MTHFR (C677T),(A1298C)фолатного цикла: MTHFR гены метилентетрагидрофолатредуктазы, гены системы регуляции артериального давления: APOE(Cys112Arg+Arg158Cys) – ген аполипопротеина E; eNOS

(4a/4b) – ген эндотелиальной синтазы окиси азота; ACE (Alu Ins/Del) – ген ангиотензинпревращающего фермента.

Статистическая обработка полученных данных осуществлялась с использованием пакета программ Statistica 10.0 (SN – AXAR207F394425FA-Q).

Результаты и их обсуждение. Характеристики генетических полиморфизмов у пациентов с привычным невынашиванием беременности представлены в таблице.

Таблица — Распространенность гетерозиготных и гомозиготных мутаций у пациентов с привычным невынашиванием в зависимости от гена-фактора

Параметр		Число обследованных, п=114	
		абсолютное число	P±m, %
F2 – ген II фактора свертывания крови (протромбин)	Вариант нормы: генотип (G/G)	109	95,61±1,92
	Мутации в гетерозиготном состоянии (G/A)	5	4,39±1,92
	Мутации в гомозиготном состоянии (A/A)	0	-
F5 – ген V фактора свертывания крови (мутация Лейдена)	Вариант нормы: генотип (G/G)	110	96,49±1,72
	Мутации в гетерозиготном состоянии (G/A)	3	2,63±1,5
	Мутации в гомозиготном состоянии (A/A)	1	0,88±0,87
	Вариант нормы: генотип (Val/Val)	56	49,12±4,68
F13A1 – ген XIII фактора свертывания крови	Мутации в гетерозиготном состоянии (Val/Leu)	52	45,61±4,66
	Мутации в гомозиготном состоянии (Leu/Leu)	6	5,26±2,09
РАІ-1 – ген антагониста тканевого активатора плазминогена	Вариант нормы: генотип (5G/5G)	42	36,84±4,52
	Мутации в гетерозиготном состоянии (5G/4G)	42	36,84±4,52
	Мутации в гомозиготном состоянии $(4G/4G)$	30	26,32±4,12
Ген MTHFR (С677T)	Вариант нормы: генотип (С/С)	61	53,51±4,67
	Мутации в гетерозиготном состоянии (C/T)	44	38,60±4,56
	Мутации в гомозиготном состоянии (T/T)	9	7,89±2,52
Ген MTHFR (A1298C)	Вариант нормы: генотип (А/А)	59	51,75±4,68
	Мутации в гетерозиготном состоянии (A/C)	46	40,35±4,59

Параметр		Число обследованных, п=114	
		абсолютное число	P±m, %
	Мутации в гомозиготном состоянии (C/C)	9	7,89±2,52
Ген аполипопротеина E APOE (Cys112Arg+ +Arg158Cys)	Вариант нормы: генотип (Е3/Е3)	91	79.82±3,76
	Мутации в гетерозиготном состоянии (E2 /E3, E3/E4, E2/E4)	22	19,30±3,7
	Мутации в гомозиготном состоянии (E2/E2, E4/E4)	1	0,88±0,87
Ген эндотелиальной синтазы окиси азота eNOS (4a/4b)	Вариант нормы: генотип (4b /4b)	87	76,32±3,98
	Мутации в гетерозиготном состоянии (4a/4b)	26	22,8±3,93
	Мутации в гомозиготном состоянии (4a/4a)	1	0,88±0,87
Ген ангиотензинпревраща ющего фермента АСЕ (Alu Ins/Del)	Вариант нормы: генотип (I/I)	52	45,61±4,66
	Мутации в гетерозиготном состоянии (I/D)	46	40,35±4,59
	Мутации в гомозиготном состоянии (D/D)	16	14,04±3,25

Наибольшая частота мутаций выявлена для гена PAI-1 — гена антагониста тканевого активатора плазминогена, показатель, соответствующий варианту нормы, выявлен у 22 (36,84 \pm 4,52%) пациентов, тогда как мутации этого гена достигала 63,16 \pm 4,52%. Практически с одинаковой частотой определялись мутации гена F13A1 — 50,88 \pm 4,68%, гена ACE — 54,39 \pm 4,66%, генов МТНFR (A1298C) — 48,25 \pm 4,68%, МТНFR (C677T) — 46,49 \pm 4,67%. Наименьшее количество мутаций как в гетеро-, так и гомозиготном состоянии выявлено для гена протромбина — 4,39 \pm 1,92% и мутации Лейдена — 3,51 \pm 1,72%.

Полученные данные свидетельствуют, что чаще всего у одного пациента с привычным невынашиванием беременности имелось 3 мутации (30,70±4,32%, n=35). Сочетание 2 мутаций встречалось у 18 (15,79±3,42%) пациентов, сочетание 4 мутаций – у 26 (22,81±3,93%), сочетание 5 мутаций – у 10 (5,87±2,65%), сочетание 6 мутаций – у 3 (2,63±1,50%). По 1-й мутации было определено в 16 (14,04±3,25%) случаях. Отсутствие мутаций обследованных генов у пациентов с привычным невынашиванием наблюдалось у 6 (5,26±2,09%) пациентов. Только в 1 (0,88±0,87%) случае была выявлена тромбофилия высокого риска – гомозиготная мутация Лейдена F5.

Полученные нами результаты свидетельствуют о значимости изучения распространения мутаций генов системы гемостаза, ангиогенеза, фолатного цикла, генов, регулирующих артериальной давление, и их влияния на

Проведенные исследования репродуктивные потери. показывают, генетический риск выкидыша может быть обусловлен индивидуальными неблагоприятными вариантами генов. Мы считаем, что недостаточно оценивать вклад каждого отдельного фактора риска в развитие невынашивания беременности. Для корректного выявления величины риска использовать комплексный подход и ориентироваться на поиск комбинаций аллельных вариантов риска, а также учитывать общее количество генетических нарушений, ассоциированных с развитием данной патологии. Чем больше потенциальных факторов риска будет протестировано, тем корректнее будет определена генетическая предрасположенность К невынашиванию беременности. Такая ДНК диагностика, является одним из необходимых пациентов 4Пс привычным компонентов медицины В терапии невынашиванием беременности. Выявление высокого генетического риска потери беременности позволит врачам назначать соответствующую терапию огромное и для сохранения беременности, ЧТО имеет социальное, экономическое значение, а также позволит улучшить демографическую ситуацию в стране.

Выводы:

- 1. У пациентов с привычным невынашиванием беременности выявлены полиморфизмы генов гемостаза: F2 (G20210A) в 4,39±1,92% случаях, F5 (G1691A) в 3,51±1,72%, F13A1 (Val34Leu) в 50,88±4,68%; гена системы ангиогенеза PAI-1 (4G/5G) в 63,16±4,52%; генов фолатного цикла: МТНFR (C677T) в 46,49±4,67%, МТНFR (A1298C) в 48,25±4,68%; генов системы регуляции артериального давления: APOE(Cys112Arg+Arg158Cys) в 20,18±3,76%; eNOS (4a/4b) в 23,68±3,98%, ACE (Alu Ins/Del) в 54,39±4,66%.
- 2. В 0,88±0,87% случаев была выявлена тромбофилия высокого риска гомозиготная мутация Лейдена F5.

ЛИТЕРАТУРА

- 1. Доброхотова, Ю. Э. Несостоявшийся выкидыш. Существенные и возможные последствия / Ю. Э. Доброхотова, Ж. А. Мандрыкина, М. Р. Нариманова // Рос. вестн. акушера-гинеколога. 2016. Т. 16, № 4. С. 85—90.
- 2. Пестрикова, Т. Ю. Изучение распространенности дефектов в генах системы гемостаза у пациенток с репродуктивными потерями в анамнезе. Выбор рациональной тактики / Т. Ю. Пестрикова, Е. А. Юрасова, А. Ю. Воробьева // Рос. вестн. акушера-гинеколога. 2022. № 22 (1). С.11—20.