НЕЭПИТЕЛИАЛЬНЫЕ ОПУХОЛИ ПРИ БЕРЕМЕННОСТИ

Белевич Е. А., Тимошко А. Н.

УО «Гродненский государственный медицинский университет »

Научный руководитель: Плоцкий А. Р.

Актуальность. Новообразования яичника солидной структуры вызывают затруднения в диагностике не только вне беременности, но и при гестационном процессе[1]. Различные типы опухолей яичников могут иметь схожую эхографическую семиотику.

Цель. Изучить эхографические признаки неэпителиальных новообразований яичников при беременности.

Методы исследования. Проведен ретроспективный анализ двух клинических случаев новообразований яичников больших размеров, впервые обнаруженных при беременности.

Результаты и их обсуждение. Случай 1. Пациентка К., 29 лет, поступила стационар с доношенной беременностью. Ультразвуковые в акушерский исследования (далее УЗИ), проведенные в декретивные сроки, не выявили какой-либо патологии яичников. В сроке 35 недель беременности впервые было обнаружено образование солидного строения, размерами 15х17х17 см, располагавшееся в левой подвздошной области. Жидкостной компонент в структуре образования занимал не более 10-15 %, а при допплеровском картировании был выявлен интенсивный кровоток. В связи с имевшимся косым положением плода, пациентка была родоразрешена путем операции кесарева сечения. В ходе операции выполнена левосторонняя аднексэктомия. При исследовании установлено наличие злокачественной гистологическом гранулезоклеточной опухоли. С учетом данного факта объем оперативного вмешательства был расширен до тотальной гистерэктомии с резекцией большого сальника.

Случай 2. Пациентка М., 20 лет, направлена в акушерский стационар в сроке 34 недели беременности с диагнозом: Киста правого яичника больших размеров? Субсерозная миома? Из анамнеза известно, что в сроке 16-17 недель при выполнении УЗИ впервые было обнаружено образование солидного характера диаметром 8 см, располагавшееся по правому ребру матки, которое было расценено как субсерозный миоматозный узел и не явилось поводом выполнения хирургического вмешательства. ДЛЯ В дальнейшем отмечено постепенное увеличение этого образования в размерах, появился и нарастал болевой синдром, а через несколько дней после место признаки внутрибрюшного госпитализации имели кровотечения. картина характеризовалась наличием Ультразвуковая солидно-кистозной подвздошной области 15x12x14 опухоли правой размером незначительным интранодулярным кровотоком свободной И наличием

жидкости в брюшной полости. После экстренного родоразрешения путем операции кесарева сечения был установлен разрыв кистозного образования, исходящего из правого яичника, выполнена правостороння аднексэктомия. При гистологическом исследовании была верифицирована текофиброма.

Выводы. Эхографические признаки гранулезоклеточной опухоли и фибромы могут не иметь отличий. При беременности эти образования могут характеризоваться быстрым ростом. В ряде случаев возникает необходимость проводить дифференциальную диагностику между кистозными образованиями придатков и различными видами миом.

ЛИТЕРАТУРА

1. Малиновский М. С. Оперативное акушерство. М., 2015

ИЗУЧЕНИЕ ЗАТУХАЮЩИХ КОЛЕБАНИЙ МАТЕМАТИЧЕСКОГО МАЯТНИКА С ПОМОЩЬЮ КОМПЬЮТЕРА В ФИЗИЧЕСКОМ ПРАКТИКУМЕ

Белуш М. В., Новицкая Э. Д.

УО "Гродненский государственный медицинский университет"

Научный руководитель: Лукашик Е. Я.

Одним Актуальность. самых главных достоинств компьютеризированного эксперимента является автоматизация сбора, обработки и анализа данных, представления результатов эксперимента в электронном виде. Для цифровой обработки сигналов с помощью датчиков целесообразно использовать микроконтроллерные устройства [1]. Одной из наиболее популярных аппаратно-программных микроконтроллерных платформ является в настоящее время платформа Arduino. Датчики, устройства вводавывода, разработанные специально для платформы Arduino, представлены большим количеством вариантов.

Цель. Создание устройства для регистрации параметров математического маятника на компьютере для лабораторного практикума по медицинской и биологической физике.

Методы исследования. Для достижения поставленной цели необходимо следующее оборудование: компьютер, макетная плата, микроконтроллерный модуль Arduino Nano, ультразвуковой датчик расстояния HC-SR04 на макетной плате, среда разработки и программирования Arduino IDE, программный пакет