5. The role of C-reactive protein as a prognostic marker in COVID-19 / D. Stringer, [et al] // International Journal of Epidemiology. – 2021. - Vol. 50, N 2. – P. 420–429.

ВЛИЯНИЕ НАНОЧАСТИЦ СЕРЕБРА НА БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ НЕФРОТОКСИЧНОСТИ Довнар Р.И.

УО «Гродненский государственный медицинский университет», г. Гродно, Республика Беларусь

Серебро в жизнедеятельности людей нашло самое широкое практическое применение. Так ещё в древние времена для хранения воды и вина использовались серебряные сосуды [2]. В настоящее время основными областями использования серебра являются: ювелирное дело, в связи с тем, что данный металл является самым дешёвым из всех драгоценных металлов, электротехническая промышленность, фотография, изготовление посуды, монет, зеркал, взрывчатых веществ, а также медицина [2]. Новый импульс применению серебра в последнее десятилетие придали успехи нанотехнологии, позволившей создавать наночастицы этого и других металлов, в том числе с использованием методов «зелёной химии» [1].

Возможность потенциально широкого использования наночастиц данного металла и изделий на их основе открывает новые вопросы перед современной наукой, в частности токсичности, которая детально не изучена и требует выполнения дополнительных исследований. Одним из таких вопросов является нефротоксичность наночастиц серебра, которая может быть оценена по ряду параметров, в частности по уровню мочевины и креатинина.

Цель: Оценка возможного токсического влияния наночастиц серебра на биохимические показатели нефротоксичности при локальном лечении кожной раны нанокомпозитными перевязочными материалами.

Материалы и методы исследования. Для реализации намеченной цели на лабораторных беспородных белых крысах была создана экспериментальная гнойная рана. Использовалось три группы животных: «контроль» — интактные крысы, оперативные вмешательства на которых не осуществлялись, «опыт-1» и «опыт-2» — животные с гнойной раной, в лечении которых применялся соответственно обычный бинт и бинт с наночастицами серебра. Взятие крови производилось на 14 сутки эксперимента с последующим центрифугированием и определением биохимических показателей, свидетельствующих о возможной нефротоксичности наночастиц серебра.

Результаты и обсуждение.

В качестве биохимических показателей возможной нефротоксичности наночастиц серебра были взяты уровень мочевины и креатинина крови экспериментальных животных.

Мочевина образуется из аммиака под действием ферментов печени в цикле мочевины в процессе метаболизма белков. Большая часть поступающей

затем в кровоток мочевины легко фильтруется и экскретируется почками. Хотя почечные канальцы активно не секретируют и не реабсорбируют мочевину, она обадает способностью свободно диффундировать. Мочевина пассивно поступает в интерстициальную ткань почек и возвращается в кровоток. Пассивная диффузия мочевины зависит от скорости фильтрации мочи — чем выше скорость фильтрации, тем ниже уровень мочевины в крови. Образование мочевины повышается при усилении катаболизма белков, которое происходит при употреблении пищи богатой белками, желудочно-кишечном кровотечении или длительном применении кортикостероидов. И наоборот, продукция мочевины снижается при низком содержании белков в рационе. Учитывая то, что в эксперименте все группы животных были синхронизированы по питанию, данный алиментарный фактор был устранён.

Повышенный уровень мочевины в циркулирующей крови или азотемия может быть обусловлен преренальными, ренальными и постренальными расстройствами. Преренальная азотемия связана с нарушениями, при которых снижается скорость клубочковой фильтрации, вследствие чего уменьшается скорость тока в почечных канальцах. Происходит усиление обратной диффузии мочевины в перитубулярный интерстиций с последующим повышением уровня мочевины в крови. Ренальную азотемию обычно вызывают тяжёлые заболевания или токсические повреждения почек, связанные как уменьшением числа клубочков, так и нарушением их микросктруктуры, которые приводят к снижению скорости клубочковой фильтрации. Постренальная азотемия чаще всего обусловлена обструктивными процессами в мочевыводящих путях.

Большая часть креатинина синтезируется в печени и транспортируется в скелетные мышцы, где некоторое количество креатинина фосфорилируется с образованием креатинфосфата. Креатин является основным компонентом высокоэнергетических фосфорилированных соединений, а креатинфосфат служит источником высокоэнергетических фосфатных групп, необходимых для метаболизма в мышечной ткани. Креатинин представляет собой конечный метаболизма креатина, который спонтанно образуется необратимой неферментативной дегидратации креатинфосфата. Креатинин диффундирует в кровоток относительно постоянной скоростью, c пропорциональной мышечной массе и свободно фильтруется клубочками почек. Обычно метаболизм креатинина не подвержен влиянию большинства экстраренальных факторов, влияющих на уровень мочевины в циркулирующей крови. Повышенный уровень креатинина в кровотоке обычно бывает обусловлен расстройствами, вызывающими снижением скорости клубочковой причины), фильтрации (преренальные тяжёлыми заболеваниями токсическими повреждениями почек (ренальные причины) и обструктивными расстройствами, препятствующими выведению креатинина с мочой. В связи с тем, что для эксперимента отбирались здоровые животные, возможные причины в форме пре- и постренальной азотемии или гиперкреатининемии исключались.

На 14 сутки эксперимента уровень мочевины в группе «контроль» составил 6,20 (4,10;7,60) ммоль/л, в группах «опыт-1» и «опыт-2» – 6,55 (4,40;

6,85) и 5,10 (3,85; 6,05) ммоль/л соответственно. Значение уровня креатинина в группе с интактными животными («контроль») равнялось 67,00 (64,00; 68,00) Ед/л, у оперированных крыс при применении перевязочного материала, содержащего обычный бинт 69,50 (65,00; 71,50) Ед/л, а в группе с наночастицами серебра («опыт-2») – 66,00 (62,50; 68,50) Ед/л.

Произведенная статистическая обработка полученных результатов с заданным пятипроцентным уровнем статистической значимости не выявила достоверных отличий как в показателе мочевины, так и уровня креатинина.

Выводы

- 1) Наночастицы серебра, импрегнированные в состав перевязочных материалов, не оказывают статистически достоверных изменений показателей мочевины и уровня креатинина.
- 2) Отсутствие достоверных изменений мочевины, уровня креатинина свидетельствует об отсутствии негативного влияния наночастиц серебра на клетки почек, а значит и возможной нефротоксичности.
- 3) Для исследования возможного более углубленного токсического воздействия наночастиц серебра на организм необходимо проведение дополнительных исследований.

Финансирование. Работа выполнена в рамках гранта Президента Республики Беларусь на 2023 год в сфере науки.

ЛИТЕРАТУРА

- 1. Наночастицы серебра: экологичный метод синтеза, свойства и использование против антибиотикорезистентной микрофлоры / Р. И. Довнар, [и др.] // Известия Национальной академии наук Беларуси. Серия медицинских наук. -2021. -T. 18, № 3. -C. 351-361.
- 2. Серебро в медицине / Е. М. Благитко, [и др.]. Новосибирск : Наука-Центр, 2004. 256 с.

ОЦЕНКА ОБЕСПЕЧЕННОСТИ ДЕТЕЙ, НАХОДЯЩИХСЯ НА ЕСТЕСТВЕННОМ ВСКАРМЛИВАНИИ, ЭССЕНЦИАЛЬНЫМИ МИКРОЭЛЕМЕНТАМИ

Карнаухова И.В., Мачнева И.В., Лебедева Е.Н.

ФГБОУ ВО «Оренбургский государственный медицинский университет», г. Оренбург, Российская Федерация

Актуальность. Грудное вскармливание (ГВ) — ключевое условие нормального роста и развития младенцев. Для детей, находящихся исключительно на ГВ, материнское молоко является источником не только пластических и энергетических веществ, но и важнейших микроэлементов (МЭ), среди которых особое место занимает тетрада эссенциальных элементов — цинк, селен, медь, железо.