- 2. Алещик, И. Ч., Шавейко, Т. В. Рак гортани в сочетании с другими опухолями / Шавейко Т. В. // Сборник материалов научно-практической конференции студентов и молодых ученых, посвященной 60-летию учреждения образования «Гродненский государственный медицинский университет»., ГрГМУ, Гродно, 27-28 сентября 2018. С. 15.
- 3. Кузьмичев, Д. Е. Первично-множественный рак / Д. Е. Кузьмичев и др. // Здравоохранение Югры: опыт и инновации. 2019. С. 38-40.

АНАЛИЗ РЕЗУЛЬТАТОВ ИЗУЧЕНИЯ НЕГАТИВНОГО ДЕЙСТВИЯ МЕЛКОДИСПЕРСНЫХ ВЗВЕШЕННЫХ ЧАСТИЦ (РМ2.5) НА РАЗЛИЧНЫЕ ОРГАНЫ И СИСТЕМЫ

Трифонюк И. В., Сидорик А. А.

Гродненский государственный медицинский университет

Научный руководитель: к. б. н., доцент Зиматкина Т. И.

Актуальность. Одной из острых экологических проблем настоящего времени является загрязнение атмосферного воздуха. Главные причины атмосферного загрязнения воздуха — это производство электроэнергии, промышленные процессы, добыча полезных ископаемых, сельскохозяйственная деятельность, нерациональное удаление отходов и транспорт. По последним статистическим подсчетам загрязнение атмосферного воздуха (воздуха вне помещений) как в городах, так и в сельской местности стало причиной около четверти случаев преждевременной смерти в год; эта смертность была обусловлена воздействием мелких взвешенных частиц под общим названием PM_{2.5} (*PM* – *Particulate Matter*).

 $PM_{2.5}$ — это особый класс твердых мелкодисперсных частиц, взвешенных в воздухе, диаметром не менее 2.5 микрон. Они образуются в результате горения топлива и химических реакций, протекающих в атмосфере. Естественные процессы, такие как лесные пожары, также способствуют образованию $PM_{2.5}$ в воздухе. Более того эти мелкодисперсные частицы являются основной причиной возникновения смога [1]. Из этого следует, что контроль загрязнения воздуха и изучение патогенеза $PM_{2.5}$ являются чрезвычайно важными вопросами.

Окислительный стресс, воспаление И генотоксичность являются механизмами прогрессирования основными потенциальными заболевания, вызванного этими мелкодисперсными частицами [2]. Результаты исследований клеток in vitro (т.е. на монослое одного типа клеток) и in vivo (на животных) получить жизненно важное представление 0 воздействия РМ_{2.5} при прогрессировании заболевания [1]. Лучшее понимание механизмов заболеваний, связанных с РМ_{2.5}, позволит разработать новые стратегии помощи людям, подверженным риску, и уменьшить вредное воздействие твердых частиц на патогенез различных заболеваний. Чтобы лучше

устранить пробелы в знаниях, исследования должны быть сосредоточены на молекулярных механизмах, с помощью которых $PM_{2.5}$ и его компоненты влияют на здоровье населения.

Целью работы является анализ и изучение экспериментальных исследований негативного действия мелкодисперсных частиц $PM_{2.5}$.

Методы исследования. В работе использовали поисковый, сравнительный и аналитические методы для выявления основных закономерностей и механизмов действия мелкодисперсных взвешенных частиц в развитии респираторных заболеваний, сердечно-сосудистой дисфункции, иммунных воспалительных реакций и аллергической сенсибилизации.

Результаты и их обсуждение. Респираторные заболевания. Дыхательная система является основной мишенью воздействия $PM_{2.5}$. В результате анализа исследований выявили, что воздействие $PM_{2.5}$ может приводить к усилению окислительного стресса в дыхательных путях, особенно в нижних дыхательных путях здоровых людей [2]. Эти мелкодисперсные частицы даже в малых дозах вызывают повреждение ДНК и клеточную дисфункцию, что может способствовать возникновению воспалительных реакций дыхательных путей, ослаблению легочной функции, возникновению и ухудшению течения хронической обструктивной болезни легких (ХОБЛ) и астмы, что делает легкие восприимчивыми к инфекциям.

Сердечно-сосудистые дисфункции. При анализе исследований было выявлено, что при длительном нахождение на территории с высокой концентрацией мелкодисперсных систем начинается каскад реакций в организме. При вдыхании $PM_{2.5}$ сужается просвет бронхов, что является следствием возникновение тахипноэ. Сердце реагирует на это состояние тахикардией/аритмией. Через сутки может начаться воспалительный ответ с ростом выработки цитокинов, отрывом атеросклеротических бляшек, образованием тромбов, повреждением сосудистых стенок [3]. В итоге этого возрастает вероятность сердечно-сосудистой патологии — ишемической болезни сердца, инфарктов, инсультов и тромбоэмболий.

Иммунные воспалительные реакции. Макрофаги являются основной мишенью для иммунных воспалительных реакций, вызванных $PM_{2.5}$. Они играют центральную роль в высвобождении цитокинов после вдыхания частиц и участвуют почти во всех иммунных воспалительных реакциях.

Проанализировав результаты эксперимента in vivo, проводимого на мышах, выяснили, что некоторые компоненты $PM_{2.5}$, а именно кобальт, полученный из почвы, медь — из автомобильных абразивов и продукты сгорания мазута, такие как ванадий и никель, индуцируют уровни $A\Phi K$ (активной формы O_2) в клетках альвеолярных макрофагов крысы. Усиливались аутофагия легочных макрофагов, высвобождение NO и повышался уровень ЛДГ (лактатдегидрогеназы), что запустило воспалительные реакции.

Аллергическая сенсибилизация. Были детально изучены экспериментальные исследования in vivo (на мышах и людях), которые показали, что многочисленные типы мелкодисперсных частиц вызывают аллергическое воспаление [2]. Выявили, что органические, так и

неорганические компоненты, покрывающие частицы и их ядра, усиливают аллергическую сенсибилизацию. Также было показано, что компоненты и растворимость $PM_{2.5}$ играют важную роль в аллергической сенсибилизации. У мышей NC/Nga (инбредная модель мыши, используемая в качестве модели атопического дерматита человека), которые обладают высокой восприимчивостью к аллергенам клещей, $PM_{2.5}$ может усилить аллергическое воспаление дыхательных путей за счет активации воспалительного процесса и синергетического действия нерастворимых и растворимых фракций $PM_{2.5}$.

Совместное воздействие $PM_{2.5}$ и формальдегида может значительно усугубить аллергическую астму, которая связана с индуцированным окислительным стрессом через сигнальный путь переходного рецепторного потенциала ваниллоида 1, а также через активацию стромального лимфопоэтина тимуса у мышей [1].

В модели морских свинок острое воздействие $PM_{2.5}$ с гидроксидом алюминия у сенсибилизированных животных усиливало специфическую гиперреактивность и эозинофильное и нейтрофильное воспаление дыхательных путей при аллергической астме [1].

Выводы. По результатам анализа исследований in vivo и in vintro позволило получить представление о механизмах воздействия РМ_{2.5} на прогрессировании патологий: со стороны сердечно-сосудистой системы влияние на развитие заболеваний, такие как гипертония, атеросклероз и сахарный диабет. Со стороны дыхательной системы мелкодисперсные частицы в малых дозах способствуют возникновению воспалительных реакций путей, ослаблению легочной функции, возникновению и дыхательных ухудшению течения хронической обструктивной болезни легких (ХОБЛ) и астмы, что делает легкие восприимчивыми к инфекциям. Со стороны иммунной системы - мелкодисперсные частицы в контакте с токсическими веществами вызывают аллергические реакции, значительно усугубляют протекание астмы, вызывает гиперреактивность И нейтрофильное дыхательных путей. Лучшее понимание механизмов заболеваний, связанных с РМ 2.5, позволит разработать новые стратегии помощи людям, подверженным риску, и уменьшить вредное воздействие РМ 2.5 на патогенез различных заболеваний.

ЛИТЕРАТУРА

- 1. Cho Ching-Chang, In Vitro and In Vivo Experimental Studies of PM2.5 on Disease Progression / Ching-Chang Cho [et al.] // International Journal of Environmental Research and Public Health. 2018. Vol. 15. P. 1380.
- 2. Qin G., Overproduction of reactive oxygen species and activation of MAPKs are involved in apoptosis induced by PM2.5 in rat cardiac H9c2 cells / G. Qin [et al.] // J. Toxicology. 2016. Vol. 36. P. 609-617.
- 3. Wan Q., Puerarin attenuates PM2.5-induced vascular endothelial cells injury via ERK1/2 signaling pathway / Q. Wan [et al.] // J. National Library of Medicine. 2016. Vol. 41. P. 2309-2311.