Таблица 2 – Пороговые значения объёма опухоли

Порог	Чувствительность (Se), %	Специфичность (Sp), %	PPV	NPV
15,0	71,4	100,0	100,0	40,0
13,5	81,0	100,0	100,0	50,0
9,4	95,2	100,0	100,0	80,0
5,0	95,2	50,0	90,9	66,7
4,7	100,0	50,0	91,3	100,0

Площадь под ROC-кривой составила 0.976 ± 0.029 с 95% ДИ: 0.920 - 1.000. Полученная модель была статистически значимой (p = 0.003).

Пороговое значение объёма опухоли в точке cut-off, которому соответствовало наивысшее значение индекса Юдена, составило 9,400 см³. Чувствительность и специфичность модели составили 95,2% и 100,0%, соответственно.

Выводы. Таким образом, в проведенном исследовании ПОГМ был выявлен в 84 % случаев. ПОГМ наблюдается при значении объёма менингиомы равный или выше 9,400 см³. Пол и возраст пациента не коррелируют наличие и степень выраженности ПОГМ.

ЛИТЕРАТУРА

- 1. Древаль, О.Н. Нейрохирургия: руководство для врачей. М.: Литерра, 2012. 592 с
- 2. Nakano, T, Asano, K, Miura, H et al. (2012). Meningiomas with brain edema: radiological characteristics in MRI and review of literature. J. Clin. Imaging, 26, 243-249.

АНАЛИЗ ВРЕМЕННОГО ИНТЕРВАЛА МЕЖДУ ОБНАРУЖЕНИЕМ ПЕРВИЧНОЙ ОПУХОЛИ И ВОЗНИКНОВЕНИЕМ МЕТАСТАЗОВ В ГОЛОВНОЙ МОЗГ

Довнар А. И., Богданович Е. Р.

Гродненский государственный медицинский университет, Гродно, Беларусь

Актуальность. У 8%-10% онкологических пациентов развиваются метастазы в головном мозге, которые часто определяют основную клиническую симптоматику [1]. По данным популяционного канцер-регистра из 2724 пациентов злокачественными опухолями, которые получили специфическое лечение в период с 1986 по 1995 гг., метастазы головного мозга развились у 232 пациентов (8,5%). Частота развития МГМ после 5 лет наблюдения составила 16,3% у пациентов с диагнозом рак легких, 9,8% при почечно-клеточном раке, 7,4% при меланоме, 5,1% при раке молочной железы, 1,2% при колоректальном раке.

Цель. Анализ временного интервала между обнаружением первичной опухоли и возникновением метастазов в головном мозге.

Методы исследования. Проведен ретроспективный анализ 26 пациентов, оперированных по поводу метостазов головного мозга в УЗ «ГКБСМП г. Гродно» в период с 2020 по 2022 гг. Оценивалось влияние локализации первичной опухоли, пола, возраста, гистологического результата, объёма опухоли на временной интервал выявления метастазов в головном мозге. Характеристика вторичных опухолей проводилась на основании изображений, полученных при помощи МРТ головного мозга. Для вычисления статистических показателей использовалась о программа StatTech v. 2.8.8. Порог значимости р выбран равным 0,05.

Мужчин было 18 (69,2%), женщин - 8 (30,8%). Возраст пациентов варьировал от 56 до 73 лет (средний возраст – $63,81\pm4,67$ лет). Средний объем опухоли составил 10.5 см3.

Результаты и их обсуждение. Был проведен анализ временного интервала между первичным и вторичным очагом в зависимости от локализации первичной опухоли.

Таблица 1 – Анализ временного интервала между первичным и вторичным очагом в зависимости от локализации первичного очага

Показатель	Категории	Временной интервал между первичным и вторичным очагом (лет)			n	
Tiokusuiesib	Категории	Me	$Q_1 - Q_3$	n	p	
	Лёгкие	1	1-1	9		
	Меланома кожи	2	2-2	2	0.005	
Попрумуму	Молочная железа	4	2-7	3		
Первичный очаг	Неизвестен	0	0-0	5	0,005	
	Почки	6	5-6	4		
	Толстая кишка	11	11-11	1		
	Шейка матки	7	7-7	1		

При анализе временного интервала между первичным и вторичным очагом в зависимости от первичного очага, были установлены статистически значимые различия (p = 0.005)

Рисунок 1 — Зависимость между локализацией первичной опухоли и временем появления вторичной опухоли

Был проведен анализ временного интервала между первичным и вторичным очагом в зависимости от пола.

Таблица 2 – Анализ временного интервала между первичным и вторичным очагом в зависимости от пола

Показатель	Категории	Временной интервал между первичным и вторичным очагом (лет)		
		Me	$Q_1 - Q_3$	n
Пол	Мужчины	1	1-2	18 0,192
11031	Женщины	2	1-8	0,192

При анализе временного интервала между первичным и вторичным очагом в зависимости от пола, не удалось установить статистически значимых различий (p=0,192).

Был проведен корреляционный анализ взаимосвязи возраста и временного интервала между первичным и вторичным очагом.

Таблица 3 — Результаты корреляционного анализа взаимосвязи возраста и временного интервала между первичным и вторичным очагом

1 1	J 1	· ·		
Показатель	Характеристика корреляционной связи			
HORASATCHE	ρ	Теснота связи по шкале Чеддока	p	
Возраст – Временной интервал между первичным и вторичным очагом	0,012	Нет связи	0,953	

При оценке связи временного интервала между первичным и вторичным очагом и возраста связь отсутствовала.

Наблюдаемая зависимость временного интервала между первичным и вторичным очагом от возраста описывается уравнением парной линейной регрессии:

$$Y_{ ext{Временной интервал между первичным и вторичным очагом} = -0.031 imes X_{ ext{Возраст}} + 4.609$$

При увеличении возраста на 1 год следует ожидать уменьшение временного интервала между первичным и вторичным очагом на 0,031 лет. Полученная модель объясняет 0,2% наблюдаемой дисперсии временного интервала между первичным и вторичным очагом.

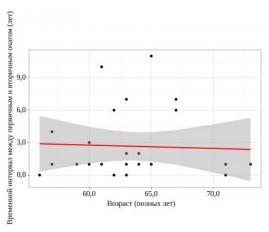


Рисунок 2 — График регрессионной функции, характеризующий зависимость временного интервала между первичным и вторичным очагом от возраста

Выводы. Таким образом, наименьший временной интервал между обнаружением первичного очага и возникновением метастазов в головной мозг при локализации опухоли в лёгких и коже, наибольший — в толстой кишке.

Пол, возраст пациента, гистологический диагноз не коррелируют с временным интервалом между первичным и вторичным очагом.

ЛИТЕРАТУРА

1. Zhang, T, Li Q, Xu B, Zhang P, Yuan P, Ma F, Wang J, Fan Y. Breast cancer brain metastases: clinical and prognostic characteristics of different biological subtypes. Zhonghua Zhong Liu Za Zhi. 2014;36(9):697–702.

РОЛЬ МАЛОИНВАЗИВНЫХ ТЕХНОЛОГИЙ В ЛЕЧЕНИИ ДЕСТРУКТИВНОГО ПАНКРЕАТИТА

Довнар И. С., Дубровщик О. И., Мармыш Г. Г.

Гродненский государственный медицинский университет, Гродно, Беларусь

Актуальность. Выбор метода оперативного лечения пациентов с острым некротическим панкреатитом остаётся актуальной проблемой, что обусловлено возрастающей частотой острого панкреатита, ростом удельного веса его деструктивных форм, сложностью диагностики и дифференциальной диагностики, неоднозначными, разноречивыми подходами к тактике лечения разных хирургических школ, а также высокой послеоперационной летальностью (1). В то же время широкое внедрение в хирургическую практику новых технологий, инструментальных методов исследования и малоинвазивных вмешательств даёт возможность пересмотреть некоторые вопросы лечебной тактики.

Цель. Оценить эффективность малоинвазивного оперативного лечения острого панкреатита.

Методы исследования. В клинике общей хирургии УО «Гродненского государственного медицинского университета» с 2017 по 2022 год включительно,