Работа выполнена при поддержке БРФФИ (грант № Б21РМ-046: Хрусталёва Т. А.), РФФИ (грант 20-54-04-004) и Министерства науки и высшего образования Российской Федерации (Попинако А. В.).

ЛИТЕРАТУРА

- 1. Dianov G., Bischoff C., Piotrowski J., Bohr V.A. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts // J. Biol. Chem. 1998. Vol. 273, № 50. P. 33811–33816.
- 2. van Loon B., Hübscher U. An 8-oxo-guanine repair pathway coordinated by MUTYH glycosylase and DNA polymerase lambda // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106, № 43. P. 18201–18206.

ИЗМЕНЕНИЕ ДЗЕТА-ПОТЕНЦИАЛА ЛИПОПРОТЕИНОВ НИЗКОЙ ПЛОТНОСТИ ПРИ ДЕЙСТВИИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Челнокова И. А.¹, Ронишенко Б. В.², Никитина И. А.³,

Стародубцева М. Н.^{1,3}

¹ГНУ Институт радиобиологии Национальной академии наук Беларуси, г. Гомель, Беларусь

²ГНУ Институт физико-органической химии Национальной академии наук Беларуси, г. Минск, Беларусь ³Гомельский государственный медицинский университет, г. Гомель, Беларусь

Актуальность. Основная роль липопротеинов заключается транспортировке липидов, таких как холестерин и триглицериды. Активные формы кислорода, образующиеся при действии ионизирующего излучения, вызывают образование окисленных форм липопротеинов, что в свою очередь приводит к изменению структуры и функций липопротеинов и образованию атеросклеротических бляшек [1]. Ввиду значительного роста медицинских диагностических процедур, связанных с использованием рентгеновского излучения, возрастает необходимость более детального изучения роли окислительного стресса в развитие патологий сердечно-сосудистой системы.

Цель – изучить изменение дзета-потенциала липопротеинов низкой плотности после облучения in vitro цельной крови крыс рентгеновским излучением в дозах 1 и 100 Гр.

Материалы и методы исследования. До начала эксперимента было получено одобрение комитета по этике УО «Гомельский государственный медицинский университет» на проведение исследования.

Все экспериментальные работы с лабораторными животными выполнялись в соответствии с общепринятыми нормами обращения с животными и правилами Директивы 2010/63/EU Европейского Парламента и Совета Европейского Союза по охране животных, используемых в научных целях от 22 сентября 2010 г.

Животные содержались в стационарных условиях вивария Института радиобиологии НАН Беларуси на полноценном стандартном пищевом рационе и

свободным доступом к воде, 12/12-часовом режиме освещения и темноты, согласно установленным нормам. За 2 месяца до эксперимента животные были переведены на гиперхолестериновую диету (к основному корму для 4 самцов линии Wistar добавляли ежедневно 10 г жира свиного перетопленного и желток одного куриного яйца).

В ходе эксперимента кровь самцов крыс линии Wistar (возрастом 9 месяцев) объемом по 5 мл отбирали натощак из воротной вены печени на фоне глубокого эфирного наркоза и помещали в пробирки с 3,2% раствором 2-замещенного цитрата натрия в соотношении 9:1. Опытный образец объемом 2 рентгеновском аппарате облучали рентгеновским излучением на биологического назначения X-Rad 320 Precision X-ray Inc (напряжение на трубке -320 кВ, мощность дозы -98.8 сГр/мин, фильтр № 1 (2 мм Al), расстояние до объекта – 40 см) в дозах 1 и 100 Гр. Выделение липопротеинов проводили методом ультрацентрифугирования в градиенте плотности бромида калия (ХЧ, плотностью раствора 1,063 г/мл) на центрифуге Sorvall Discovery 90 SE в течение 24 ч при 23200 об/мин при 4°С [2]. Образцы анализировали с помощью прибора Zetasizer Nano ZSP с установленным гелий-неоновым лазером мощностью 10 мВт и лавинным диодным детектором. Определение ζ-потенциала проводилось в разбавленной дистиллированной водой суспензии липопротеинов. Полученные данные анализировались с помощью программы Zetasizer Software.

Результаты. Дзета-потенциал определяли как индикатор поверхностных зарядов. Средние значения дзета-потенциала липопротеинов низкой плотности представлены в таблице. Среднее значение дзета-потенциала для контрольного -10,00±0,25 мВ. При облучении образца составляет цельной рентгеновским излучением в дозе 1 Гр распределение дзета-потенциала липопротеинов было крайне неоднородным, и функцию плотности вероятности распределения его значения можно разбить на три пика Гаусса с максимумами при (ДИ, R^2 =0,990): -56,92±17,69 (32,9% случаев), -7,73±26,66 (47,4% случаев) и +38,82±24,84 (19,7% случаев). При облучении крови рентгеновским излучением в дозе 100 Гр распределение параметра снова становится однородным, среднее дзета-потенциала восстанавливается до средних значений контрольного образца: -10,16±1,03 мВ (100% случаев).

Таблица. — Дзета-потенциал липопротеинов из крови крыс на гиперхолестериновой диете в контроле и после облучения цельной крови рентгеновским излучением в дозе 1 и 100 Гр

Образец	Пик	Дзета-потенциал, мВ	Доля пика	\mathbb{R}^2
Контроль	1 пик	-10,00±0,25	100%	0,9979±0,0013
1 Гр	1 пик	-56,92±17,69	32,9%	
	2 пик	-7,73±26,66	47,4%	0,9986±0,0014
	3 пик	+38,82±24,84	19,7%	
100 Гр	1 пик	-10,16±1,03	100%	0,9958±0,0037

Выводы. Действие рентгеновским изучением в дозе 1 Гр на цельную кровь крыс приводит к появлению резкой неоднородности популяции липопротеинов низкой плотности по значению дзета-потенциала. При дозе 100 Гр популяция липопротеинов низкой плотности становится более однородной со средним значением дзета-потенциала, близким к значению контрольного образца.

Работа выполнена в рамках проекта БРФФИ №Б20Р-427(2020-2022 гг).

ЛИТЕРАТУРА

- 1. Сыровая А. О. и др. Биологическая роль свободных радикалов в развитии патологических состояний // Международный медицинский журнал. 2012. T. 18, № 3 (71). C. 98–104.
- 2. Li K. et al. Isolation of plasma lipoproteins as a source of extracellular RNA /// Methods in Molecular Biology. 2018. Vol. 1740. P. 139–153.

КИСЛОРОДЗАВИСИМЫЕ ПРОЦЕССЫ ПРИ СИНДРОМЕ ОБСТРУКТИВНОГО АПНОЭ ВО СНЕ

Шишко В. И., Шульга Е. В., Гуляй И. Э., Милош Б. А.

Гродненский государственный медицинский университет, г. Гродно, Беларусь

Актуальность. Синдром обструктивного апноэ во сне (COAC) – состояние, характеризующееся грубой фрагментацией сна, избыточной дневной сонливостью, храпом, периодическим спадением верхних дыхательных путей на уровне глотки и прекращением лёгочной вентиляции при сохраняющихся дыхательных усилиях. СОАС сопровождается нарушением газообмена, повторяющимися эпизодами гипоксемии и гиперкапнии и, как результат, ухудшением оксигенации головного мозга, сердца, что обуславливает степень тяжести сердечно-сосудистых заболеваний, когнитивных нарушений, повышает риск внезапной смерти во сне [1].

Установлено, что мужской пол, пожилой возраст, храп, ожирение, диабет и другие факторы риска неблагоприятных коронавирусной инфекци COVID-19 тесно связаны с COAC. Cade B. E. и соавт. также описали COAC как фактор риска заболеваемости и смертности COVID-19, подчеркнув необходимость мониторирования пациентов с СОАС в случае инфицирования SARS-CoV-2 [3]. Исследование CORONADO (Coronavirus SARS-CoV-2 and Diabetes Outcomes), выполненное среди госпитализированных по поводу COVID-19 пациентов (средний возраст 69,8±13,0 лет) с сопутствующей патологией (СОАС, АГ, СД и т. д.), выявило значимую взаимосвязь СОАС с риском смерти на 7 день болезни [5]. Как показали исследования, некоторые патогенетические аспекты СОАС, а именно наличие хронической интермиттирующей гипоксии, имеют тесную взаимосвязь с нарушением регуляции ренин-ангиотензин-альдостероновой системы, обуславливает высокую частоту сопутствующей АГ у пациентов с апноэ сна [3]. Выявлено также, что у пациентов с СОАС существует прямая зависимость между тяжестью апноэ во сне и активностью образования свободных радикалов,