О ЦИФРОВИЗАЦИИ БИОФИЗИЧЕСКОГО ОБРАЗОВАНИЯ В РАМКАХ КОНЦЕПЦИИ «УНИВЕРСИТЕТ 4.0»

Хильманович В. Н.

Гродненский государственный медицинский университет, г. Гродно, Беларусь

Тенденции развития современной высшей школы за последнее десятилетие сильно изменились. Классическое образование сегодня переживает кризис, вызываемый следующими основными факторами: отставанием знаний, получаемых обучающимися, от уровня развития технологий. Внедрение цифровых технологий в систему образования – глобальная тенденция. Цифровые технологии активно проникают на все уровни системы образования способствуют эффективному вовлечению обучающихся более образовательный процесс, а также персонализации обучения посредством участникам образовательного процесса материалов, предоставления соответствующих их уровню знаний и интересам [1].

Биофизическое образование в медицинском вузе не стало исключением. Необходимость цифровой трансформации – актуальная и своевременная проблема для биофизического образования в рамках Концепции «Университет 4.0». Хотелось бы отметить, что биофизическое образование в медицинском вузе сегодня не может ограничиваться только изучением дисциплины «Медицинская связи с потребностями биологическая физика». В высококвалифицированных медицинских кадрах появилась необходимость объединить в понятие «биофизическое образование» знания, умения и навыки не только по биофизике (одной из фундаментальных составляющих медицинской науки) вместе с биологией и химией, но и основы прикладной математической применяемые статистики, широко сегодня В медицине, основы информационных технологий.

Необходимость Актуальность. цифровизации биофизического образования медицинском вузе обусловлена кризисом классического образования, глобальными изменениями в обществе на всех уровнях образовательного процесса в связи с применением цифровых технологий и общества потребностью В высококвалифицированных специалистах медицинского профиля.

Цель – создание трехмерной дидактической модели, посредством которой возможна цифровая трансформация процессов получения непрерывного биофизического образования в медицинском вузе.

Материалы и методы исследования. Учебные программы по изучаемым дисциплинам в рамках биофизического образования, компьютерные нейросети и их возможности для формирования единой информационной образовательной базы и создания индивидуальных траекторий обучения будущих специалистов.

Результаты. Трехмерная модель выбрана нами неслучайно. Она представляет собой фигуру, оси которой формируются по уровням образования, компонентам образовательного процесса и компонентам, составляющим само биофизическое образование. Компоненты биофизического образования

составляются непосредственно по дисциплинам «Медицинская и биологическая физика», «Биомедицинская статистика» и «Информатика в медицине».

Компонент «Медицинская и биологическая физика» формируется в соответствии с типовыми учебными планами по «Медицинской и биологической физике» в рамках каждой медицинской специальности и является основным для биофизического образования. Несмотря на то, что будущие врачи изучают дисциплину только один год, содержимое компонента может представлять интерес и на второй ступени образовательного процесса, а также служить хорошим дополнением при повышении квалификации для врачей медико-диагностического профиля.

«Биомедицинская необходим Компонент статистика>> рамках биофизического образования, так как современная доказательная медицина базируется только на методах математической статистики. Поэтому на первой медицинского образования основы математической изучаются студентами 1 и 2 курсов, в зависимости от специальности. Вторая ступень медицинского образования предусматривает изучение статистических критериев, непосредственно применяемых в медицинских и биофизических исследованиях. Курсы повышения квалификации врачей предполагают изучение исследований в конкретных методик статистических узко специализации.

Компонент «Информатика в медицине» необходим для изучения на всех этапах формирования биофизического образования в медицинском вузе. Современное развитие информационных технологий предполагает постоянное обучение в области информатизации, в том числе и для медицинского образования.

Содержание биофизического образования выбирается в зависимости от уровня образования и от компонента образовательного процесса. Компоненты образовательного процесса (теория, практика и контроль) формируются в зависимости от уровня образования (1 ступень, 2 ступень, повышение квалификации). Все компоненты зависят друг от друга и тесно связаны между собой. Таким образом, реализуется непрерывный образовательный процесс в соответствии с образовательным стандартом «Университет 4.0».

Один из способов обеспечения «жизнедеятельности» трехмерной модели — использование самообучающихся искусственных нейронных сетей. Работа искусственной нейронной сети построена по принципу организации и функционирования биологических нейронных сетей. Главное ее преимущество перед традиционными алгоритмами — возможность обучения. Нейросеть самостоятельно обучается способности человека к обобщению и распознаванию информации, а также сочетает в себе способность компьютера работать с большими объемами. Нейросеть собирает необходимую информацию при помощи поисковых систем, программ и интеллектуальных алгоритмов интернет-пространства. Таким образом, самообучающаяся нейросеть формирует общую, самообновляющуюся информационную базу для использования в процессе обучения.

В качестве примера рассмотрим проектирование теоретической

образовательной траектории ДЛЯ 2 ступени образования основам математической статистики. Согласно образовательному стандарту второй ступени высшего образования, магистранты, помимо осуществления деятельности, принимают участие и в научной работе. Результатом выполнения научной работы магистранта является его магистерская диссертация, где использование методов математической статистики – обязательное условие. В зависимости от профилизации и специальности магистранта он может изучать эти методы в разном объеме. Чтобы сформировать теоретическую траекторию осуществить выбор ПО специализации магистрант должен (профилизации) темы занятия и по виду получаемой информации. Вид получаемой информации далее осуществляется по объему выборки, которая подлежит обсчету. Если выборка большая и предикторов много, образовательная модель предложит выбрать теорию по стандартным статистическим критериям, применяемым в медицинской практике. Если объем выборки малый и число параметров, характеризующих объект, примерно равно объему выборки, модель предложит рассмотреть теорию построения моделей множественной регрессии для выборок ограниченного объема [2]. Это важный момент, позволяющий не только существенно сэкономить время, но и правильно выстроить дальнейшую цепочку получения теоретической информации по изучаемому вопросу. При этом сохраняется возможность получения теоретических знаний из уровня первой ступени высшего образования – все определяется уровнем подготовки магистранта. Таким образом, формируется индивидуальная образовательная обучаемого по теоретическому аспекту занятия в соответствии с учебной программой по выбранной дисциплине в соответствии со специальностью и ступенью образования.

Выводы. Необходимость цифровой трансформации биофизического образования продиктована временем. Для ее реализации разработана трехмерная дидактическая модель, позволяющая с помощью привлечения нейросетей формировать информационную базу и выстраивать индивидуальные образовательные траектории. Применение модели способно реализовать непрерывность образовательного процесса по конкретной специальности, что является важным аспектом концепции «Университет 4.0».

ЛИТЕРАТУРА

- 1. Концепция цифровой трансформации процессов в системе образования Республики Беларусь, утержд. Министром образования М. В. Карпенко 15.03.2019.
- 2. Копыцкий А. В., Хильманович В. Н. Программная среда «R» как составная часть методики преподавания математической статистики в медицинском вузе // Информатизация и методика электронного обучения: цифровые технологии в образовании: Материалы V Международной научной конференции / Сибирский федеральный университет. Красноярск, 2021. С. 245–249.