// Журнал «Современные проблемы науки и образования». -2020. -№ 6. - URL: http://www.science-education.ru/ru/article/view?id=30319 (дата обращения: 04.03.2021).

- 2. Алёшина Т. Е., Наумова А. А., Наумова Т. А. Зависимость работоспособности от соблюдения режима дня // Международный научный журнал «Инновационная Наука». 2016. № 10. С. 28–30.
- 3. Звягина Е. В., Диогенова К. С. Влияние факторов режима дня на здоровье студентов, занимающихся спортом //Научно-периодический журнал «Здоровье человека, теория и методика физической культуры и спорта». 2018. 1000 1
- 4. Зенкина В. Г., Зенкин И. С., Владимирова К. Е. Хронобиологический тип студентов и академическая успеваемость // Амурский медицинский журнал. -2019. № 3. С. 36—40.

ВЛИЯНИЕ КРИОТЕРАПИИ НА АДАПТАЦИОННЫЙ ПОТЕНЦИАЛ ОРГАНИЗМА

Соловьёв А. В.

Гродненский государственный медицинский университет, г. Гродно, Беларусь

Актуальность. Изучение механизмов индивидуальной устойчивости организма к неблагоприятному воздействию разных негативных факторов имеет большое социальное и медицинское значение. Все более актуальной становится проблема обеспечения быстрой и эффективной подготовки организма к экстремальным условиям обитания и труда и создания функциональных предпосылок для сохранения его здоровья. Один из путей ее решения — привлечение эффективных современных и физиологически обоснованных технологий при одновременном использовании рациональной системы комплексной диагностики и коррекции функционального состояния организма.

Поскольку организм человека представляет собой «самонастраивающуюся» систему, он способен перестраиваться в ответ «на ситуацию», включая ряд информационных механизмов. Так, при воздействии холодовой процедуры организм может бурно прореагировать на данный раздражитель. Короткие по времени общие холодовые процедуры способны мобилизовать тончайшие физико-химические или биохимические процессы, вызвать изменения в ферментно-белковых структурах клетки, способствовать образованию медиаторов обменных реакций, повышать интенсивность процессов окисления и восстановления [1].

Понижение температуры окружающей среды запускает механизмы реакций. адаптационно-компенсаторных Ответ организма данный стресс-фактор определяется состоянием и напряжением его органов и систем, силой и временем действия раздражителя. В совокупности это формирует адаптационный потенциал, который является показателем жизнедеятельности, формирование уровня которого изменений зависит OT комплекса физиологических систем организма человека, a также ПОД влиянием стресс-факторов (температура, физическая и умственная работа, сдвиг атмосферного давления) [4].

Цель – оценить эффект влияния криотерапии на адаптационный потенциал организма у лиц мужского пола в возрасте от 18 до 22 лет с нормальной массой тела.

Материалы и методы исследования: Объект исследования — лица мужского пола в возрасте 18-22 лет с нормальной массой тела.

Испытуемым проводились 10 сеансов криотерапии ежедневно в криоустановке «Криомед-20/150» под контролем врача после проведения инструктажа и оценки общего состояния исследуемых. Перед началом процедуры измерялись температура тела, пульс, АД и ЭКГ. Исходная температура: -90°С в течении 30 секунд, ежедневно температура в камере снижалась по 5°С и доводилась до -120°С. Время холодового воздействия 120 секунд.

Адаптационный потенциал организма оценивался с помощью ряда функциональных проб: индекс массы тела – масса тела (кг) / рост (M^2), индекс $(A\Pi)=0.011*\text{4CC}+0.014*A_{\text{CUCT}}+0.008*A_{\text{JIMACT}}$ потенциала адаптационного +0,014* Возр(г)+0,009* Вес(кг) – 0,009*Рост(см) -0,27. Для количественной оценки энергопотенциала организма человека применяли Индекс Робинсона (ИР) = ЧССп*АДС/100, уровень физического состояния определяли по формуле: УФС=700-3*ЧСС-2.5*АДср-2.7*возр+0.28*вес/350-2.6*возр+0.21* рост. При проведении пробы Штанге испытуемый задерживал дыхание на вдохе, время измерялось в секуднах. До тестирования и после измеряли пульс за 30 секунд для определения ПР (показатель реакции). При проведении пробы Генчи испытуемый задерживал дыхание на максимально возможное время после выдоха. Полученные данные обрабатывались с использованием программы «Statistica 10.0.

Результаты. После проведения курса криотерапии в виде ежедневных процедур в течение 10 дней у обследованных лиц заметно улучшились показатели функциональных проб. Отмечалось снижение массы тела на 1-2 килограмма, улучшение адаптационного потенциала до высоких значений, увеличение Индекса Робинсона на ступень выше, уровень физического состояния стал выше среднего по сравнению с данными до криотерапии. В сравнении с данными до и после воздействия процедур криотерапии время задержки дыхания увеличилось, пульс и показатель реакции остался в диапазоне 1-2, что говорит об удовлетворительной реакции сердечно-сосудистой системы на недостаток кислорода. Полученные данные свидетельствует об улучшении адаптационного потенциала и защитных сил организма.

Выводы. Таким образом, установлен положительный эффект курса общей криотерапии на функциональное состояние исследуемых. Систематическое курсовое воздействие экстремально низкой температурой на организм человека, не истощая энергетические резервы и не нарушая функциональные механизмы организма, приводит к активации ряда взаимосвязанных адаптационно-компенсаторных механизмов, которые способствуют улучшению показателей функциональных проб, что свидетельствует о повышении адаптационных возможностей организма.

ЛИТЕРАТУРА

- 1. Ашиткова А. Р. Функциональные исследования в безопасном применении криотерапии // Криотерапия в России : Материалы XI Международной научно-практической конференции. 2019. С. 96-102.
- 2. Рузматов Ш. Х. Опыт применения общей криотерапии у спортсменов различных видов спорта // Лучшая научно-исследовательская работа 2020 : сборник статей XXIX Международного научно-исследовательского конкурса. 2020. С. 176-178.
- 3. Степанюк М. А., Левин М. Л.,. Герасимович Н. В. Влияние криотерапии на адаптацию кардио-респираторной системы организма спортсменов к физическим нагрузкам // Сахаровские чтения 2019 года: экологические проблемы XXI века: Материалы 19-й международной научной конференции, Минск, 23–24 мая 2019 года. Минск: Информационно-вычислительный центр Министерства финансов Республики Беларусь. 2019. С. 20-23.
- 4. Жиженина Л. М., Клокова Т. Б. Методическая разработка исследовательского занятия по определению адаптационного потенциала системы кровообращения в школьном курсе биологии 8 класса // Молодой ученый. -2016. № 12 (116). С. 863-865.

ИЗУЧЕНИЕ ФИЗИЧЕСКИХ ОСНОВ ПУЛЬСОКСИМЕТРИИ В ЛАБОРАТОРНОМ ПРАКТИКУМЕ ПО ДИСЦИПЛИНЕ «МЕДИЦИНСКАЯ И БИОЛОГИЧЕСКАЯ ФИЗИКА» СТУДЕНТАМИ МЕДИЦИНСКОГО УНИВЕРСИТЕТА Стародубцева М. Н., Банный В. А., Кузнецов Б. К.

Гомельский государственный медицинский университет, г. Гомель, Беларусь

Актуальность. Частые осложнения коронавирусной инфекции COVID-19 – дыхательная недостаточность и поражение лёгких. Метод пульсоксиметрии позволяет оценить и контролировать кислородтранспортную функцию крови – одну из важнейших жизненных функций организма человека. При помощи пульсоксиметрии измеряют степень насыщения крови кислородом (SpO₂, сатурацию) и отслеживают динамику ее изменения, диагностики лёгочной патологии, вызванной, например, вирусной инфекцией. Еще в начале 70-х гг. японский биофизик Takuo Aoyagi установил, что пульсации интенсивности инфракрасного света, прошедшего через ткань раковины, несут информацию о кислородном насыщении артериальной крови. Его теория метода двухволновой пульсовой оксиметрии стала основой для разработки и выпуска в 1974 г. первого коммерческого пульсового оксиметра. Современные пульсоксиметры совмещают достоинства классической спектрофотометрии и технических достижений в области LED-технологий и машинной обработки сигналов.

Цель – разработать методику подачи материала по физическим основам пульсоксиметрии в лабораторном практикуме по медицинской и биологической физике для студентов первого курса медицинского университета.