случаев (по 1 препарату для каждой артерии). При этом в проксимальной трети части ЗА локализовалось 66,6% OT обнаруженных анастомозов (4 сосуда). A. obturatoria в своей прксимальной трети внутритазовой части анастомозировала со следующими артериями: ВполА, НЯА, НМоА. В средней и дистальной третях ЗА располагалось по 16,7% от числа всех выделенных анастомотических ветвей (по 1 сосуду в средней и дистальной третях). В средней трети внутритазовой части а. obturatoria обнаружен анастомоз только с НЯА, а в дистальной трети этой артерии – только с НМоА. В целом на левой половине таза у женщин ЗА анастомозировала 4,4% случаев (на 5 препаратах обнаружено б анастомотических ветвей).

Выводы. 1. Две трети всех выделенных анастомозов у женщин располагались в проксимальной трети внутритазовой части 3A. 2. Крупные анастомотические ветви 3A могут формироваться вне зависимости от значения диаметра этой артерии.

Список литературы:

- 1. "Beyond saving lives": current perspectives of interventional radiology in trauma / A. Singh [et al.] // World J. Radiol. 2017. Vol. 9(4). P. 155–177.
- 2. Lustenberger, T. Secondary angio-embolization after emergent pelvic stabilization and pelvic packing is a safe option for patients with persistent hemorrhage from unstable pelvic ring injuries / T. Lustenberger, P. Stormann, K. Eichler // Front. Surg. 2020. Vol. 7.
- 3. Granite, G. Frequency and clinical review of the aberrant obturator artery: a cadaveric study / G. Granite, K. Meshida, G. Wind // Diagnostics (Basel). 2020. Vol. 10(8). P. 546.
- 4. Palliative embolization for refractory bleeding / A. Nickamp [et al.] // Semin. Intervent. Radiol. -2017. Vol. 34(4). P. 387-397.
- 5. Кузьменко, А. В. Хирургическая анатомия внеорганных анастомозов нижней мочепузырной артерии. / А. В. Кузьменко, М. Г. Шкварко / Хирургия. Журнал им. Н.И. Птрогова. 2021. № 12. С. 44-48.

АНАТОМИЯ ВНЕОРГАННЫХ АНАСТОМОЗОВ МАТОЧНОЙ АРТЕРИИ

Кузьменко А. В., Жданович В. Н.

Гомельский государственный медицинский университет, Республика Беларусь

Актуальность. Выбор определенной тактики при хирургическом лечении маточного кровотечения различного генеза, направленной на сохранение органа, остается одним из актуальных вопросов современной медицины [1]. Следует подчеркнуть, что двустороннее лигирование маточной артерии (МА) обеспечивает окончательный гемостаз в этой ситуации лишь в 71-75% случаев [1]. В остальных случаях развивается вторичное кровотечение из-за наличия хорошо развитой системы коллатералей в полости женского таза [1]. По этой

причине опасными также являются ятрогенные повреждения а. uterina [2]. Выполнение двусторонней эндоваскулярной окклюзии МА при лечении опухолей матки в некоторых случаях не может обеспечить полноценный гемостатический эффект из-за наличия внеорганных анастомозов этой артерии [3].

Необходимо отметить, что современные работы, касающиеся МА и ее ветвей предоставляют фрагментарные сведения по анатомии внеорганных и других типов локализации артериальных соустий а. uterina [4]. При этом не описываются варианты топографии и анастомозировония этих внеорганных коллатералей. Не предоставляются данные по количеству анастомозов МА и их частоте наличия в зависимости от типа телосложения женщин.

Таким образом, хирургическая анатомия внеорганных анастомозов a. uterina остается актуальным вопросом и требует дальнейшего его изучения.

Цель: исследовать анатомию внеорганных анастомозов маточной артерии. **Задачи и методы исследования.** При выполнении настоящей работы были сформулированы следующие задачи:

- 1. Установить локализацию места с наиболее вероятным присутствием внеорганных анастомозов a. uterina.
- 2. Провести корреляционный анализ между увеличением диаметров МА и значениями диаметров ее внеорганных анастомозов.

Метод препарирования выполнили на 113 трупах женщин в возрасте от 32 до 93 лет. Морфометрические характеристики исследуемых сосудов (значения длин и диаметров) получали с помощью штангенциркуля ШЦ-150 и микрометра МК-63. Представленный в этой работе материал одобрен Гомельского государственного этическим комитетом медицинского выполнении исследования При использовали университета. метод препарирования и инъекции сосудов таза.

Перед непосредственным препарированием МА выполняли смещение в медиальную сторону заднего листка париетальной брюшины и снятия с помощью анатомических пинцетов и сосудистых ножниц соединительной ткани с ВПА и пупочной артерии (ПупА) на одной из половин полости таза. С целью установления анастомотических связей a. uterina с висцеральными ветвями а. iliaca interna последовательно выделяли следующие артерии: верхние мочепузырные (BMoA), нижнюю мочепузырную (HMA), прямокишечную (СПА) и внутритазовую часть внутренней половой артерии (ВПолА). Для выявления вариантов анастомозирования МА с париетальными ветвями ВПА обнажали следующие артерии: запирательную (ЗА), нижнюю ягодичную (НЯА), верхнюю ягодичную (ВЯА), подвздошно-поясничную (ППА) и боковую крестцовую (БКА). В ходе препарирования a. uterina внеорганные выделяли все ee анастомозы. Оценивали варианты локализации.

Статистическую обработку полученных в ходе измерительных работ данных проводили в среде специализированного пакета MedStat (лицензионная версия \mathbb{N}_2 3, серийный номер MS 000050). При определении вида распределения (подчиняющегося нормальному закону или отличающегося от него)

вариационных осуществляли полученных числовых рядов W-критерия Шапиро-Уилка. С помощью полученных результатов расчетов установлено, что все вариационные ряды подчиняются нормальному закону распределения. Затем выполняли вычисления значений средних длин и диаметров МА и ее внеорганных анастомозов вместе с определением для них доверительных интервалов (ДИ). С целью проведения сравнительной оценки между величинами диаметров a. uterina и ее анастомотических ветвей рассчитывали Т-критерий Стьюдента для двух независимых выборок. Для выявления корреляционной связи между увеличением диаметра МА и увеличением диаметров ee внеорганных анастомозов рассчитывали коэффициент корреляции Пирсона (R).

Результаты. В ходе выполнения расчетов по описательной статистике полученных числовых вариационных рядов установлено, что значение средней длины МА на правой половине таза равняется 5,0 см при ДИ=(4,5;5,4) см, а величина среднего диаметра этой артерии -4,4 мм при ДИ=(3,7;5,1) мм. При этом среднее значение длины внеорганных анастомозов а. uterina равняется 1,6 см при ДИ=(1,3;1,8) см, а величина среднего диаметра этих артериальных соустий -2,0 мм при ДИ=(1,7;2,3) мм.

Анализ результатов наших исследований показал, что МА формировала внеорганные анастомозы на правой половине таза в 21,2% случаев (24 препарата). Следует отметить, что из-за наличия на двух препаратах справа по 2 артериальных соустья общее количество анастомозов а. uterina составило 26 сосудов.

В ходе проведения сравнительной характеристики между величинами диаметров МА и ее внеорганных анастомозов справа было выявлено, что их средние значения отличаются на уровне значимости р<0,001 (критерий Стьюдента равняется Т=6,47). При расчете коэффициента корреляции Пирсона (R=0,22, при р=0,278) установлено, что линейная корреляционная связь отсутствует между значениями диаметров а. uterina и ее внеорганных артериальных соустий. Таким образом, с увеличением диаметров МА не будут пропорционально возрастать диаметры ее внеорганных анастомотических ветвей.

МА анастомозировала справа с ПупА в 4,4% случаев (5 препаратов), с ВПолА – в 3,5% случаев (4 препарата), с ВЯА, НЯА, НМА и общим стволом для НЯА и ВПолА – по 2,7% случаев (по 3 препарата). А. uterina формировала также внеорганные артериальные соустья с ВМоА и СПА по 1,8% случаев (по 2 препарата), с 3А – в 0,9% случаев (1 препарат).

В целом на правой половине таза в проксимальной трети МА было обнаружено 61,5% ее всех отпрепарированных внеорганных анастомозов (16 сосудов), а в средней трети этой артерии — 38,5% от общего количества выделенных артериальных соустий. В дистальной трети а. uterina ее внеорганные анастомотические ветви отсутствовали.

По нашим данным значение средней длины MA на левой половине таза равняется 5,4 см при ДИ=(4,9; 5,9) см, а величина среднего диаметра этой артерии -4,1 мм при ДИ=(3,6; 4,5) мм. Среднее значение длины внеорганных

анастомозов а. uterina равняется 1,5 см при ДИ=(1,3; 1,8) см, а величина среднего диаметра этих артериальных соустий – 2,1 мм при ДИ=(1,8; 2,3) мм.

МА анастомозировала слева в 23,0% случаев (26 препаратов). Однако из-за наличия на одном препарате двух артериальных соустьев общее количество анастомозов а. uterina составило 27 сосудов.

При проведении сравнительной характеристики между величинами диаметров МА и ее внеорганных анастомозов слева было выявлено, что их средние значения отличаются на уровне значимости p<0,001 (критерий Стьюдента равняется T=7,45). Расчет коэффициента корреляции Пирсона (R=0,076, при p=0,707) установил, что линейная корреляционная связь отсутствует между значениями диаметров а. uterina и ее внеорганных артериальных соустий. Из этого следует, что с увеличением диаметров МА не отмечается линейное возрастание диаметров ее внеорганных артериальных соустий.

Следует отметить, что различие между средними значениями диаметров, внеорганных анастомозов а. uterina на правой и левой половинах таза не является статистически значимым (критерий Стьюдента равняется T=0.81, при p=0.422).

На нашем материале а. uterina формировала анастомозы слева с ПупА и ВМоА в 6,2% случаев (7 препаратов), с ВПолА – в 4,4% случаев (5 препаратов), с СПА – в 2,7% случаев (3 препарата). МА анастомозировала с НМА и общим стволом для НЯА и ВПолА по 1,8% случаев (по 2 препарата), с ВЯА – в 0,9% случаев (1 препарат).

Установлено, что на левой половине таза в проксимальной трети а. uterina было обнаружено 81,5% ее всех выделенных внеорганных анастомозов (22 сосуда), а в средней трети этой артерии — 18,5% от общего количества отпрепарированных артериальных соустий. В дистальной трети МА ее внеорганные анастомотические ветви отсутствовали.

Выводы. 1. Свыше 60% всех выделенных анастомозов МА располагались в проксимальной трети этой артерии. 2. Крупные анастомотические ветви МА могут формироваться вне зависимости от значения диаметра этой артерии.

Список литературы:

- 1. Lindquist, J. D. Pelvic artery embolization for treatment of postpartum hemorrhage / J. D. Lindquist, R. L. Vogelzang // Semin. in Interv. Radiol. 2018. Vol. 35(1). P. 41-47.
- 2. Uterine artery pseudoaneurysm caused by a uterine manipulator / T. Seki [et al.] // Gynecology and Min. Invas. Ther. 2017. Vol. 6(1). P. 25-27.
- 3. Management of bleeding uterine arteriovenous malformation with bilateral uterine artery embolization / T. Kim [et al.] // Yon Med. J. 2014. Vol. 55(2). P. 367-373.
- 4. Selcuk, I. Anatomic structure of the internal iliac artery and its educative dissection for peripartum and pelvic hemorrhage / I. Selcuk, M. Yassa, E. Huri // Turk. J. Obstet. and Gynecol. 2018. Vol. 15(2). P. 126-129.