ОЦЕНКА ПЕРСИСТЕНЦИИ CAR-Т КЛЕТОК В СИНГЕННОЙ МЫШИНОЙ МОДЕЛИ НЕЙРОБЛАСТОМЫ (ПИЛОТНОЕ ИССЛЕДОВАНИЕ)

Луцкович Д.В.¹, Мелешко А.Н.¹, Мигас А.А.¹, Ерофеева А.-М. В.², Дормешкин Д.О.³, Маньковская С.В.²

¹Республиканский научно-практический центр детской онкологии, гематологии и иммунологии

²Институт Физиологии Национальной академии наук Беларуси

³Институт биоорганической химии НАН Беларуси

Актуальность. Нейробластома — самая распространенная экстракраниальная солидная опухоль у детей, наиболее часто диагностируемая в младенчестве. Частота встречаемости составляет 30-40% от всех врожденных опухолей, или 1-3 случая на 100 000 детей в возрасте 0-14 лет. Лечение пациентов с нейробластомой высокой группы риска остается проблемой; в этой группе 5-летняя выживаемость составляет около 38-40%.

САR-Т иммунотерапия оказалась очень эффективна для лечения лейкозов и лимфом, и позволила достичь ремиссии почти у 90% пациентов с рефрактерным рецидивом заболевания. К сожалению, таких результатов пока не удалось достичь при применении CAR-Т клеток в терапии солидных опухолей [1], что обуславливает актуальность дальнейших исследований. Одним из этапов разработки нового вида лечения включает в себя обязательное проведение экспериментов с использованием лабораторных животных.

Таким образом, **цель** данной работы — получение функционально активных CAR-T клеток для мышиной модели нейробластомы и оценка их персистенции in vivo.

Материалы и методы исследования. Мышиная модель нейробластомы была получена путем подкожной инфузии суспензии 2 млн клеток мышиной нейробластомы NXS2 сингеннным мышам линии A/J [2]. Группа состояла из 10 самок в возрасте 7 недель, средний вес варьировал в пределах 18-20 грамм.

Для получения генетически модифицированных мышиных Т-лимфоцитов, экспрессирующих химерный антигенный рецептор (CAR), были собраны генетические конструкции лентивирусного вектора, содержащие ген флуоресцентного белка GFP в одном транскрипте с геном химерного антигенного рецептора мыши, включающим рецепторную часть антитела против мишени GD2, антитела 8B6 против мишени О-асеtyl-GD2 [3]. Получение псевдотипированных лентивирусных частиц проводили путем ко-трансфекции клеток HEK293T с концентрацией

вирусных частиц центрифугированием. Функциональный титр определялся по трансдукции репортерного гена GFP. Т-лимфоциты выделяли коммерческим набором EasySepTM из суспензии спленоцитов здоровой мыши путем отрицательной селекции. Активацию Т-клеток производили коммерческим набором DynabeadsTM Mouse T-Activator CD3/CD28. Активированные Т-лимфоциты подвергали экспансии в 6-луночной плашке, из расчета 1 млн Т-клеток на 1 мл питательной среды RPMI, содержащей L-глютамин, 1% антибиотика/антимикотика, 10% эмбриональной телячьей сыворотки, 500 IU ИЛ-2/мл, 50 µМ В-меркаптоэтанола, 1х раствора незаменимых аминокислот, 1х раствора пирувата натрия и 0,05 мг/мл глюкозы. Инфицирование Т-клеток мыши производили в количестве 1×10⁵ с множественностью 50 трансдуцирующих вирусных частиц на 1 клетку, для усиления трансдукции использовали полибрен с конечной концентрацией 4 мкг/мл. Экспрессия химерного антигенного рецептора оценивалась через 48 часов после трансдукции по приобретению лимфоцитами, экспрессирующими САR, флуоресцентного окрашивание GFP, в сравнении с вектор-контролем (MOCK) трансдуцированных пустым вектором. Для поставки функционального (цитотоксического) теста использовали клетки-мишени NXS2, с добавлением витального красителя DAPI. ЦТТ анализировался в двух соотношениях 1:1 и 1:3 мишень: эффектор. Внутривенную инфузию функционально активных CAR-Т производили двум группам мышей, с привитой опухолью (NXS2) и без. Объем вводимого препарата для всех вариантов составлял 300 мкл в трех разных концентрациях CAR-T из расчета на килограмм: 3,5 млн, 7 млн и 14 млн на каждый вариант САР. В качестве контроля одной подопытной мыши был введен МОСК, количество вводимых лимфоцитов рассчитывалось исходя из максимальной дозы CAR-T и составило 2,6 млн. Второй подопытной мыши был введен физрастовор, для проверки эффекта плацебо. Для проверки персистенции и экспансии CAR-Т в крови мыши, использовали метод проточной цитометрии. Забор крови осуществляли на 3-е, 7-е и 14-е сутки.

Результаты. Были получены CAR к двум мишеням нейробластомы мыши: анти-GD2 и анти-O-acetyl-GD2, с коротким шарнирным регионом между трансмембранным и антиген-распознающим доменом рецептора. Функционально активный титр псевдотипированных лентивирусных частиц на 1 мл вирусного супернатанта составил: для анти-GD2 CAR -1×10^8 , для анти-O-acetyl-GD2 CAR -2.3×10^8 . Количество изолированных Т-клеток составило 12,6 млн с чистотой 91%. Эффективность трансдукции составила: для анти-GD2 -8%, анти-O-acetyl-GD2 -7%.

Цитотоксический тест полученных вариантов CAR-T против GD2 положительных клеток мышиной нейробластомы при соотношении 1:1

мишень-эффектор составил: для анти-GD2 -31%, для анти-O-acetyl-GD2 -29%.

После инфузии CAR-Т клеток в трех временных точках проводился забор крови из хвостовой вены животного для оценки персистенции CAR-Т клеток. Содержание CAR-Т клеток в крови мыши с опухолью от числа всех лимфоцитов увеличилось с 3 до 7 дня и составило максимум 43-72%, с последующим снижением на 14 сутки (таблица 1).

Таблица 1 – Динамика CAR-Т клеток у мышей с опухолью

Номер мыши	Вариант CAR-T	Доза CAR-T	3-е сутки	7-е сутки	14-е сутки
4	Анти-GD2	3,50E+04	не хватило клеток	1,32%	1%
3	Анти-GD2	7,00E+04	3,23%	43,23%	умерла
1	Анти-GD2	1,40E+05	7,71%	27,63%	умерла
10	Анти-O-acetyl-GD2	3,50E+04	3,18%	0,61%	0,45%
7	Анти-O-acetyl-GD2	7,00E+04	3,22%	2,14%	1,15%
2	Анти-O-acetyl-GD2	1,40E+05	5,21%	72,22%	умерла
5	МОСК (чистые лимфоциты)	2,0E+06	0,3%	0,29%	0,2%
6	Физраствор	300 мкл	0,33%	0,31%	0,33%

Мыши № 1, 2 и 3 погибли из-за острого системного воспалительного синдрома, вызванного большой дозой CAR-T клеток в присутствии опухоли.

Содержание CAR-Т клеток в крови мыши без опухоли при сопоставимой дозе было значительно ниже и упало до нуля на 14 сутки (таблица 2).

Таблица 2 – Динамика CAR-Т клеток у мышей без опухоли

Номер мыши	Вариант CAR-T	Доза CAR-T	3-е сутки	7-е сутки	14-е сутки
1	Анти-GD2	1,40E+05	6,78%	0,64%	0%
2	Анти-O-acetyl-GD2	1,40E+05	2,40%	0,67%	0%
3	МОСК (чистые лимфоциты)	2,0E+06	0%	0%	0%
4	Физраствор	300 мкл	0%	0%	0%

Общее состояние мышей в период всего эксперимента характеризовалось как положительное. Подопытные выводились из эксперимента по состоянию здоровья в разное время. Последней точкой были 14 сутки после инфузии. Выводы. Нами была получены аутологичные CAR-Т клетки мыши к двум мишеням мышиной нейробластомы — с химерным рецептором против GD2 и его ацетилированной формы, более специфичной для опухолевых клеток. CAR-Т персистировали в течение 2 недель только у мышей с опухолью. Мыши, получившие максимальную и среднюю дозу CAR-Т анти-GD2, а также максимальную дозу CAR-Т анти-O-асеtyl-GD2, достигли максимума экспансии на 7 день и погибли из-за острого системного воспалительного синдрома, вызванного большой дозой CAR-Т клеток в присутствии опухоли. Мыши с низкой дозой анти-GD2 CAR-Т, а также с средней и низкой дозой анти-O-асеtyl-GD2 CAR-Т характеризовались постепенным снижением персистенции. Прирост уровня CAR-Т клеток у мышей с опухолью, относительно здоровых мышей указывает на мишень-специфическую экспансию CAR-Т клеток.

Литература

- 1. Abbasi J. Mixed Findings in Pediatric Neuroblastoma CAR-T Therapy / J. Abbasi [et al] // Trial. Biotech Innovations; JAMA. 2021. Vol. 325(2). P. 121.
- 2. Webb, E. R. Immune characterization of pre-clinical murine models of neuroblastoma/ E. R. Webb [et al] // Sci Rep. 2020. Vol. 10. P. 16695.
- 3. Terme, M. Chimeric antibody to O-acetyl-GD2 mediates the same efficient antineuroblastoma effects as therapeutic antibody to GD2 without antibody induced allodynia / M. Terme [et al] // P LoS One. -2014. Vol. 10, N 9(2). P. 87210.

ВЛИЯНИЕ «ОМЕГА-3 ПНЖК» НА ПРООКСИДАНТНО-АНТИОКСИДАНТНЫЙ СТАТУС И СОСТОЯНИЕ ЭНДОТЕЛИЯ СОСУДОВ ПРИ СУБТОТАЛЬНОЙ ИШЕМИИ ГОЛОВНОГО МОЗГА КРЫС

Максимович Н.Е., Троян Э.И., Лелевич А.В.

Гродненский государственный медицинский университет, Беларусь

Актуальность. Ишемические инфаркты находятся на втором месте среди причин смертности и приводят к инвалидизации пациентов. Важную роль в патогенезе ишемии головного мозга (ИГМ) играет свободно-радикальное окисление [1]. В результате чего образующиеся активные формы кислорода вызывают перекисное окисление, усугубляя нарушения структуры головного мозга [2]. Необратимые изменения в ткани мозга развиваются через 5-6 минут после критического снижения регионального мозгового кровотока в результате частичного или полного прекращения кровотока по сосудам. Также важное значение