ВЛИЯНИЕ ПРОЛИНСОДЕРЖАЩИХ ДИПЕПТИДОВ НА ПОВЕДЕНИЕ ЛАБОРАТОРНЫХ МЫШЕЙ В FORCED SWIM TEST

Кравченко Е.В., Ольгомец Л.М., Саванец О.Н., Бизунок Н.А., Дубовик Б.В., Пилюцкая А.А.

Институт биоорганической химии НАН Беларуси

Актуальность. Приоритетным направлением современной психофармакологии является разработка новых безопасных и высокоэффективных лекарственных препаратов для фармакотерапии депрессивных расстройств [1]. Регуляторные пролинсодержащие пептиды положены в основу разработки лекарственных средств для лечения нарушений в психоэмоциональной сфере (окситоцин; селанк – производное тафтсина, семакс – фрагмент кортикотропина АКТГ4-10 [2] и др.). Циклопролилглицин (ЦПГ) при двухнедельном введении проявляет антидепрессивноподобную активность, сопоставимую с действием флуоксетина на мышах BALB/с; для аналогов ЦПГ — цикло-L-пипеколилглицин (ГЗК-001) и (S)-тетрагидро-2H-пирроло[1,2-е]имидазол-1,3-дион (ГЗК-002) также было показано наличие антидепрессивноподобной активности [1]. Дипептиды пролил-лейцин (Pro-Leu) и лейцил-пролина гидрохлорид (Leu-Pro) – соединения, структурно родственные окситоцину, облегчающие процессы неассоциативного обучения [3]. В научной литературе не обнаружено сведений о влиянии вышеуказанных дипептидов на депрессивноподобное состояние лабораторных животных.

Цель. Оценка влияния дипептидов Pro-Leu и Leu-Pro на депрессивноподобное состояние аутбредных мышей ICR в тесте «Forced Swim Test» (FST).

Материалы и методы исследования. Фармакологическую активность пролинсодержащих дипептидов изучали в опытах на мышах самцах ICR, содержавшихся в стандартных условиях вивария со свободным доступом к кормуИ и воде в соответствии с требованиями Санитарных правил и норм 2.1.2.12-18-2006. Для моделирования «поведения отчаяния» у грызунов использовали парадигму «принудительное плавание» — Forced Swim Test (FST). Установка «KinderScientificCompany LLC Forced Swim Systems, Motor Monitor» (фирма «Kinder Scientific Company LLC», США) и условия эксперимента соответствовали модифицированному методу Porsolt [4]. При проведении эксперимента продолжительностью 6 мин животное помещали в цилиндр с водой таким образом, чтобы оно не могло ни выбраться из сосуда, ни найти в нем опору, то есть касаться

дна лапками или хвостом. Помещение животного в указанные экспериментальные условия ведет к созданию депрессивноподобного состояния и позволяет моделировать «поведение отчаяния» у лабораторных грызунов. В ходе эксперимента регистрировали следующие показатели: активное плавание (усл. ед.) в варианте «swimming»; пассивное плавание (усл. ед.); латентный период первого акта иммобилизации (ЛП); кумулятивное время иммобилизации. Результаты за первые 2 мин не учитывали (период адаптации); представляли данные за период с 3 по 6 мин наблюдения. Дипептиды Pro-Leu и Leu-Pro (Sigma, США) применяли в дозах 0,1 и 0,5 мг/кг внутрибрюшинно (в/б) за 20-45 мин до FST. Анализировали результаты поведения мышей неранжированной популяции и особей с высоким уровнем зоосоциального контактирования (3 и более зоосоциальных контактов, включая обнюхивание, аллогруминг, атаки).

Результаты. Данные изучения влияния дипептидов Pro-Leu и Leu-Proна депрессивноподобное состояния мышей ІСПприведены в таблицах 1 и 2.

Таблица 1 — Влияние однократного в/б введения пролинсодержащих дипептидов на латентный период и продолжительность иммобилизации мышей самцов ICR в тесте FST

Группа/доза/число животных	ЛП иммобилизации, сек	Продолжительность иммобилизации, сек	
Контроль n=20	144,5±8,0	69,8±8,7	
Leu-Pro 0,1; n=10	129,4±5,2	85,0±11,9	
Leu-Pro 0,5; n=10	146,6±15,3	85,0±13,2	
Pro-Leu 0,1; n=10	141,6±11,3	65,4±12,4	
Pro-Leu 0,5; n=10	150,6±14,0	51,8±12,5	

Таблица 2 – Влияние однократного в/б введения пролинсодержащих дипептидов на поведение мышей самцов ICR в тесте FST

Группа/доза/число животных	Пассивное плавание						
	за 3-ю мин, усл. ед.	за 4-ю мин, усл. ед.	за 5-ю мин, усл. ед.	за 6-ю мин, усл. ед.	за 4 мин суммарно, усл. ед.		
Пассивное плавание (мыши ICR неранжированной популяции)							
Контроль n=20	14,1±1,2	13,4±1,5	12,8±2,0	9,9±1,2	50,2±4,6		
Leu-Pro 0,1; n=10	13,9±1,7	10,4±1,5	10,3±1,5	11,6±2,1	46,2±4,7		
Leu-Pro 0,5; n=10	11,1±2,7	12,2±1,8	11,3±2,2	13,2±1,7	47,8±7,3		

Продолжение таблицы 2

Pro-Leu 0,1; n=10	14,9±3,2	14,5±1,4	15,1±2,1	18,0±3,3	62,5±7,6			
Pro-Leu 0,5; n=10	17,8±2,9	15,4±1,9	17,3±3,1	$15,5\pm2,0^{x}$	66,0±7,3			
Активное плавание (мыши ICR неранжированной популяции)								
Контроль n=20	63,9±5,6	54,3±4,8	46,0±4,4	40,4±3,9	204,6±15,6			
Leu-Pro 0,1; n=10	50,9±6,2	45,1±7,0	38,0±6,4	38,6±7,0	172,6±18,4			
Leu-Pro 0,5; =10	47,9±7,7	46,5±10,1	43,3±5,8	42,8±6,7	180,5±24,4			
Pro-Leu 0,1; n=10	58,4±8,2	56,7±8,2	51,1±7,5	48,9±5,9	215,1±21,7			
Pro-Leu 0,5; n=10	59,7±10,2	54,3±9,6	68,3±6,6	60,8±6,0*	243,1±21,6			
Активное плавание								
(мыши ICR с активным фенотипом зоосоциального реагирования)								
Контроль n=17	67,3±5,9	55,4±5,4	50,9±3,9	→ 42,3±4,3	215,9±16,7			
Leu-Pro 0,1; n=10	50,9±6,2	45,1±6,9	38,0±6,4	38,6±7,0	172,6±18,4			
Leu-Pro 0,5; n=8	40,6±7,6 x0	39,8±8,3 ^x	37,4±5,2 ×	39,6±8,0	157,4±22,2			
Pro-Leu 0,1; n=10	58,4±8,2	56,7±8,2	51,1±7,5	48,9±5,9	215,1±21,7			
Pro-Leu 0,5; n=9	60,2±11,4	51,0±10,0	64,1±5,7	59,3±6,5	234,7±22,3			

Примечание — Различия статистически значимы по сравнению: x — с контролем, $p \le 0.05$, критерий Манна-Уитни; x — с контролем, p < 0.05, критерий Крускала-Уоллиса с последующей обработкой данных методом апостериорных сравнений по критерию Данна (группы: Pro-Leu 0.1 мг/кг; Pro-Leu 0.5 мг/кг; контроль); 0 — то же, группы: Leu-Pro 0.1 мг/кг; Leu-Pro0.5 мг/кг; контроль.

У особей неранжированной популяции Pro-Leu (0,5 мг/кг, в/б) вызывал существенную активацию поведения в последнюю минуту тестирования (p<0,05). Индивидуальная чувствительность к антидепрессантоподобному действию Pro-Leu не обнаружена. Типирование позволило выявить высокую чувствительность мышей с активным фенотипомзоосоциального реагирования к негативному влиянию Leu-Pro (0,5 мг/кг; p<0,05) в FST.

Выводы. Дипептид Pro-Leu при внутрибрющинном введении в дозе 0,5 мг/кг (но не 0,1 мг/кг) проявлял антидепрессивноподобную активность в FST на мышах ICR; Leu-Pro (0,5 мг/кг) оказывал противоположно направленное действиеу особей с высоким уровнем зоосоциального контактирования.

Литература

1. Влияние циклопролилглицина и его аналогов на моноаминергические системы мозга мышей BALB/c. /A. А. Абдуллина [и др.] // Фармакокинетика и фармакодинамика. -2020. № 1. С. 3-10.

- 2. Дипептидный аналог холецистокинина-4 ослабляет тревожную реакцию у «высокоэмоциональных» мышей BALB/с и при моделировании алкогольной абстиненции у крыс: сравнение с феназепамом / Л. Г.Колик [и др.] // Фармакокинетика и фармакодинамика. -2017. N = 2. C. 19-24.
- 3. Регуляция процессов неассоциативного обучения олигопептидами, структурно родственными окситоцину / Е. В.Кравченко [и др.] // Новости медико-биологических наук. -2019. -№ 4. -C. 5–8.
- 4. Biological Factors Influencing the Mice Forced Swim Test / C. C. Qi, Y. Q. Ding, J. N. Zhou // J. Neurol. Neuromedicine. 2016. V. 1 (N 4). P. 21–24.

ОСТРАЯ ТОКСИЧНОСТЬ НОВЫХ ПРОИЗВОДНЫХ ПИПЕРИДИНА И МОРФОЛИНА

Круковская Е.Ю.

Гродненский государственный медицинский университет

Актуальность. В последние десять лет наблюдается постоянный рост распространённости тревожных расстройств среди населения по всему миру. По данным некоторых популяционных исследований этот показатель составляет порядка 33,7% [1]. В действительности он намного выше, так как большинство пациентов при появлении первых симптомов тревожного расстройства не спешат обращаться за медицинской помощью.

Недооценка тревожных расстройств может затруднять коррекцию общемедицинских проблем и способствовать прогрессированию соматических заболеваний. Это наиболее типично для заболеваний системы кровообращения, при которых персистирующая гиперкатехоламинемия, сопряженная с тревожным расстройством, усугубляет кардиальную дисфункцию, провоцируя ишемию миокарда, нарушения сердечного ритма, утяжеляя течение артериальной гипертензии и метаболического синдрома [2]. Таким образом, лечение тревожных расстройств является одной из важнейших задач современной психофармакологии.

Большинство анксиолитиков, применяемых в настоящее время при данной патологии, относятся к производным бензодиазепина. Существенными недостатками этой группы лекарственных средств являются выраженное седативное действие, а также способность вызывать лекарственную зависимость при длительном применении. В связи с этим существует настоятельная необходимость поиска новых анксиолитиков с другими механизмами действия, не обладающих недостатками, характерными для производных бензодиазепина [3].