ВЛИЯНИЕ L-АРГИНИНА И АМИНОГУАНИДИНА НА ДВИГАТЕЛЬНУЮ АКТИВНОСТЬ КРЫС С ЭКСПЕРИМЕНТАЛЬНЫМ ПЕРИТОНИТОМ

Гусаковская Э.В., Максимович Н.Е., Ковалева В.А.

Гродненский государственный медицинский университет

Актуальность. Воспаление характеризуется развитием нарушений микроциркуляции, гипоксии, ацидоза, клеточного энергодефицита, катаболизмом белков мышечной ткани, что находит отражение в возникновении нарушений двигательной активности [1]. В свою очередь, известно, что субстрат NO-синтазы (NOS) – L-аргинин (L-Arg) участвует в регуляции кровотока посредством повышения образования NO эндотелием кровеносных сосудов, обладает щелочными свойствами, является источником креатина, запасающего макроэргические связи в виде креатинфосфата и поддерживающего уровень АТФ за счет креатинфосфокиназной реакции, а также выступает в качестве компонента белковых молекул [1, 2]. В то же время, бактериальные эндотоксины модулируют активность NOS в направлении использования L-Arg, преимущественно индуцируемой изоформой NOS (iNOS), принимающей участие в уничтожении патогенов и в повреждении окружающих тканей. В связи с этим представляет интерес изучение эффекта ингибирования iNOS в условиях увеличения биодоступности L-Arg для реализации важных метаболических путей, не связанных с iNOS, в том числе для регуляции метаболизма в мышечной ткани у крыс с воспалительным процессом в брюшной полости.

Цель исследования — охарактеризовать влияние сочетанного введения субстрата NO-синтазы — L-аргинина и ингибитора индуцируемой изоформы NO-синтазы — аминогуанидина на двигательную активность крыс с экспериментальным перитонитом.

Материалы и методы исследования. Животные (n=90) были разделены на 5 равных серий, которым внутрибрюшинно, 0,6 мл/100 г массы тела, вводили: 1-й серии (контроль) — 0,85% NaCl, 2-5-й серии — 15% каловую взвесь (ЭП), после чего внутримышечно вводили: 1-2-й серии — 0,85% NaCl, 3-й серии (ЭП+L-Arg) — субстрат NOS — L-аргинин (L-Arg), 300 мг/кг («Sigma», США), 4-й серии (ЭП+AG) — ингибитор iNOS — аминогуанидин (AG), 15 мг/кг («Sigma», США), 5-й серии (ЭП+L-Арг+AG) — L-Arg («Sigma», США) и AG («Sigma», США) в аналогичной дозе. В свою очередь, в каждой из пяти серий выделены три равные подгруппы крыс соответственно срокам исследования —

спустя полсуток, 1 сутки и 3 суток. Крыс помещали на огражденную, размеченную на пронумерованные квадраты горизонтальную поверхность, затем в течение 5 минут осуществляли видеофиксацию траектории движения, с целью последующего ее воспроизведения и измерения пройденного расстояния в дециметрах [3, 4].

Результаты. Развитие острого ЭП у крыс с сочетанным введением субстрата NOS — L-Arg и ингибитора iNOS — AG характеризовалось наиболее значимым корригирующим эффектом в отношении двигательной активности, по сравнению с результатами при их изолированном использовании (таблица 1). При этом различия в значениях изучаемых показателей, по сравнению с результатами при перитоните без введения комбинации изучаемых модуляторов NOS, отмечены во все изучаемые сроки.

Таблица 1 – Расстояние, пройденное крысами с экспериментальным перитонитом (ЭП) и введением L-аргинина (L-Arg) и аминогуанидина (AG), Me (LQ; UQ)

Группы крыс, сроки ЭП		Длина пройденного пути в тесте «открытое поле», дм
Контроль		29,7 (27,0; 33,3)
ЭП	0,5 сут	9,2 (7,5; 11,3) ***
	1 сут	5,9 (5,5; 7,2) ***Ψ
	3 сут	7,8 (6,4; 8,8) ***
ЭП+L-Arg	0,5 сут	13,2 (10,1; 16,0) **
	1 сут	9,0 (8,0; 10,3) **#
	3 сут	15,3 (13,4; 16,3) **##∆
ЭП+АС	0,5 сут	16,2 (13,3; 17,7) **##
	1 сут	14,0 (12,6; 15,4) **##
	3 сут	20,1 (18,6; 21,1) **##
ЭП+L-Arg+AG	0,5 сут	15,0 (13,6; 16,2) **#
	1 сут	13,1 (12,0; 15,6) **##§
	3 сут	25,3 (24,3; 26,2) *##ΨΔ§α

Примечание — значимые различия относительно: * — p<0,05, ** — p<0,01, *** — p<0,001 — группы «контроль»; * — p<0,05, $^{##}$ — p<0,001 — группы «ЭП»; $^{\Psi}$ — p<0,05 — полсуток и $^{\Delta}$ — p<0,05 — 1 суток в пределах группы; в группе крыс «ЭП+L-Arg+AG» относительно § — группы «ЭП+L-Arg»; $^{\alpha}$ — группы «ЭП+AG».

Изменение двигательной активности крыс с ЭП и сочетанным введением L-Arg и AG выражалось в увеличении расстояния, пройденного животными в тесте «открытое поле», по сравнению с результатами при перитоните без введения препаратов, спустя полсуток – на 63,0% (p<0,01), спустя 1 сутки — на 122,0% (p<0,01), спустя 3 суток — на 224,4% (p<0,01). При этом длина пути, пройденного крысами спустя 1 сутки, была меньше, чем спустя полсуток, на 13% (p>0,05), а спустя 3 суток – больше, чем спустя полсуток и 1 сутки, на 69% (p<0,05) и на 93% (p<0,05) соответственно, свидетельствуя о положительной динамике исследуемого показателя. Кроме того, длина пройденного крысами пути была больше, чем у животных с изолированным введением L-Arg, спустя 1 сутки – на 51 (50; 53) %, р<0,01, спустя 3 суток – на 66 (61; 81) %, p < 0.01, в то время как при ЭП с введением AG различия выявлены только через 3 суток. При этом увеличение расстояния, преодоленного крысами с сочетанным введением L-Arg и AG, составило 26 (24; 31) %, p<0,01. Однако, по сравнению со значением показателя в «контроле», у крыс с ЭП и комбинированным введением L-Argu AG продолжали сохраняться различия в пройденном расстоянии, которое оставалось меньше: спустя полсуток — на 50% (p<0,001), спустя 1 сутки — на 56% (p<0,001), спустя 3 суток — на 15% (p<0,05). Эти различия были меньше, чем у крыс с введением только L-Arg либо только AG.

Увеличение двигательной активности крыс с ЭП и сочетанным введением изучаемых модуляторов NOS может быть обусловлено уменьшением интоксикации вследствие подавления образования пероксинитрита и развития инициируемых им эффектов путем ингибирования iNOS аминогуанидином, а также улучшения кровоснабжения (эффект «поддержания» эндотелиальной изоформы NOS) и повышения образования креатина в мышечной ткани за счет уменьшения дефицита L-Arg [1].

Вывод. Течение острого перитонита у крыс сопровождалось угнетением двигательной активности во все изучаемые сроки, что может быть обусловлено активацией iNOS и потенцированием нитрозилирующего стресса, ингибированием эндотелиальной изоформы NOS и нарушением кровообращения, развитием энергодефицита и ацидоза, катаболизмом белка мышечной ткани. Изолированное введение ингибитора iNOS – АGи субстрата NOS– L-Argпри ЭП уменьшало выраженность нарушений двигательной активности, в то время как сочетанное введение субстрата NOS – L-Arg и ингибитора iNOS – AG крысам с перитонитом приводило к наиболее выраженному корригирующему эффекту в отношении изучаемого показателя, по сравнению с результатами при их изолированном использовании. Данный эффект может быть обусловлен активацией продукции NO эндотелиального происхождения и улучшением микроциркуляции, образованием из L-Arg креатина, участвующего в энергетическом обмене в мышечной ткани, и антиоксиданта глутатиона, препятствующего оксидативному повреждению мышц, а также ингибированием цитотоксического эффекта, образуемого из NO пероксинитрита.

Литература

- 1. Терентьев, А. А. Биохимия мышечной ткани: учеб. пособие / А. А. Терентьев. М.: РНИМУ им. Н. И. Пирогова, 2019. 76 с.
- 2. Gupta V. Anti-stress and adaptogenic activity of 1-arginine supplementation / V. Gupta, A. Gupta, S. Saggu, H. M. Divekar, S. K. Grover, R. Kumar. Evid. Based. Complement. Alternat. Med. 2005. Vol. 2, № 1. P. 93–97.
- 3. Биомедицинское (доклиническое изучение) лекарственных средств, влияющих на физическую работоспособность / Н. Н. Каркищенко [и др.] М., 2017. 134 с.
- 4. Двигательная активность у крыс с экспериментальным перитонитом в условиях модуляции пути «L-аргинин-NO» / Э. В. Гусаковская, Р. В. Рыбаков, И. С. Трусова; под ред. А. Т. Щастного // Актуальные вопросы современной медицины и фармации: материалы 73-й науч.-практ. конф. студентов и молодых учёных, Витебск, 21-22 апреля 2021 г. Витебск: ВГМУ, 2021. С. 17–21.

ЭФФЕКТ ЦЕФТРИАКСОНА НА АКТИВНОСТЬ НЕЙТРОФИЛОВ В КРОВИ И АЛЬВЕОЛЯРНЫХ МАКРОФАГОВ ЛАВАЖНОЙ ЖИДКОСТИ У ПАЦИЕНТОВ С ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНЬЮ ЛЕГКИХ

Гутько А.Г.

Гродненский государственный медицинский университет

Актуальность. Хроническая обструктивная болезнь легких (ХОБЛ) – наиболее распространенное заболевание в мире (по данным WHO Global Health Estimates).

При лечении данного заболевания часто используют антибактериальные препараты цефалоспоринового ряда.

Цель. Исследовать влияние антибактериального препарата цефалоспоринового ряда (цефтриаксона) на показатели фагоцитоза при ХОБЛ.

Материалы и методы исследования. Обследовано 23 пациента пульмонологического отделения Гродненской университетской клиники. Обследованные пациента — лица с хронической обструктивной болезнью легких. Иммунологические исследования проводили в крови и лаважной жидкости пациентов, поступивших в отделение в состоянии обострения своего основного диагноза, без сопутствующей кардиальной патологии.

Средний возраст обследованных как мужчин, так и женщин, составил от 45 до 66 лет.