СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ГИСТОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ НЕЙРОНОВ КОРЫ ГОЛОВНОГО МОЗГА КРЫС ПРИ ЕГО ТОТАЛЬНОЙ ИШЕМИИ И МЕХАНИЧЕСКОЙ АСФИКСИИ

Федуто М. А., Максимович Н. Е., Бонь Е. И., Грищенко А. И.

Гродненский государственный медицинский университет, Гродно, Беларусь

Острая кислородная недостаточность служит основой разнообразных патологических процессов при многих заболеваниях и воздействиях факторов внешней среды. В частности, дефицит кислорода может наступить в результате нарушения гемодинамики (длительный спазм, тромбоз, эмболия сосуда) либо воздействия внешнего механического фактора (механическая асфиксия).

Острая гипоксия головного мозга, независимо от причин, приводит к его поражению. Это обусловлено сложностью морфологической структуры и выполняемых функций головного мозга, а также малой толерантностью к гипоксии, которая определяется высоким уровнем метаболизма, отсутствием запасов кислорода и макроэргических соединений [3,4].

Особого внимания заслуживает такая структура головного мозга, как кора. Это связано с чрезвычайной важностью в жизнедеятельности организма и тяжестью развивающихся при ее повреждении последствий.

К настоящему времени в литературе достаточно подробно освещены патоморфологические, патофизиологические и клинические аспекты глобальной гипоксии. В связи с этим целесообразно осуществить сравнительный анализ нейрональных изменений головного мозга при его тотальной ишемии и механической асфиксии.

Цель. Сравнить гистологические изменения нейронов коры головного мозга крыс при его тотальной ишемии и механической асфиксии.

Методы исследования. Исследование проведено на беспородных белых крысах (30 самцов, масса 240±20 г), разделенных на 5 групп (n=6). Контрольную группу составили ложнооперированные крысы. Эксперименты проведены с использованием 2 моделей гипоксии головного мозга: тотальной ишемии и механической асфиксии. Моделирование механической асфиксии проводили путем перевязки трахеи крыс на 30 минут и 60 минут. Моделирование тотальной ишемии головного мозга (ТИГМ) проводили путем декапитации крыс с забором материала через 30 минут и 60 минут после декапитации [1]. Исследования осуществляли в условиях внутривенного наркоза (тиопентал натрия, 40 мг/кг). Головной мозг извлекали и фиксировали в жидкости Карнуа, после чего изготовляли парафиновые срезы и окрашивали их по методу Ниссля. В гистологических препаратах определяли различные виды нейронов по степени окрашивания их цитоплазмы (хроматофилии). Изменение площади и формы нейронов (форм-фактор, фактор элонгации) оценивали с помощью программы анализа изображения ImageWarp (Bitflow,

США). Полученные результаты обрабатывали с использованием методов непараметрической статистики, Statistica 10.0 для Windows (StatSoft, Inc., США).

Результаты и их обсуждение. В контрольной группе до 95% популяции нейронов составили нормохромные клетки, а остальные 5% нейронов – гиперхромные и гипохромные клетки. Перикарионы имели округлую форму, отчетливые ровные контуры клеточной и ядерной поверхностей. Площадь перикарионов составила 220,0 (175,5; 264,5) мкм², форм-фактор – 0,9 (0,9;0,9) единиц, фактор элонгации – 1,4 (1,2; 1,4) единиц.

В оба изучаемых временных промежутка при тотальной ишемии и механической асфиксии преобладали гиперхромные сморщенные нейроны – нейроны вытянутой и многоугольной формы с интенсивно окрашенной цитоплазмой, которые, как известно, являются маркерами острой кислородной недостаточности (гипоксии) нервной ткани [3,4].

В оба изучаемых периода механической асфиксии гистологические изменения нейронов коры головного мозга проявлялись в изменении формы нейронов. Через 30 минут асфиксии форм-фактор уменьшился на 29% (p<0,05), а фактор элонгации увеличился на 68% (p<0,05) по сравнению с контролем, что отражает утрату сферичности и увеличение вытянутости перикарионов.

Спустя 60 минут асфиксии, кроме изменения формы (форм-фактор – уменьшился на 32% (p<0,05), а фактор элонгации увеличился на 74% (p<0,05)), отмечалось уменьшение площади перикарионов нейронов на 40% (p<0,05) по сравнению с контролем.

При этом у крыс с 60 минутной асфиксией отмечалось уменьшение площади перикарионов нейронов на 35% (p<0,05) по сравнению с 30 минутной асфиксией, изменение формы нейронов не происходило (p>0,05).

Наряду с изменениями хроматофилии при тотальной ишемии головного мозга гистологические нарушения нейронов его коры проявлялись в изменении размеров и формы нейронов. К 30 минутам размеры нейронов уменьшились на 74 % (p<0,05) по сравнению с контролем [2].

К 60-й минуте фактор элонгации нейронов увеличился на 35% (p<0,05) по сравнению с контролем, в то время как форм-фактор уменьшился на 34% (p<0,05).

Полученные данные отражают гистологические изменения нейронов коры головного мозга при тотальной ишемии и механической асфиксии.

При сравнении тотальной ишемии и механической асфиксии выявлены следующие изменения: спустя 30 минут гипоксии в группе «ТИГМ» площадь перикарионов по сравнению с механической асфиксией была меньше на 79% (p<0,05), а через 60 минут — на 70% (p<0,05). В то время как форма нейронов не различалась (p>0,05).

Таким образом, тотальная ишемия сопровождалась более выраженными нарушениями нейронов коры головного мозга, что проявлялось в более значительном уменьшении размеров перикарионов к 30 минутам гипоксии.

КИСЛОРОД И СВОБОДНЫЕ РАДИКАЛЫ, 2022

ЛИТЕРАТУРА

- 1. Бонь Е.И., Максимович Н.Е. Способы моделирования и морфофункциональные маркеры ишемии головного мозга // Биомедицина. 2018. N 2. С. 59–71.
- 2. Бонь Е.И., Максимович Н.Е., Зиматкин С.М. и др. Динамика морфологических изменений пирамидных нейронов филогенетически разных отделов коры мозга крыс при тотальной церебральной ишемии // Вестник Смоленской государственной медицинской академии. − 2019. − № 2. − C. 5–13.
 - 3. Гусев Е.И., Скворцова В.И. Ишемия головного мозга. М.: Медицина, 2001. 327 с.
- 4. Максимович Н.Е., Бонь Е. И., Зиматкин С. М. Головной мозг крысы и его реакция на ишемию: монография. Гродно: ГрГМУ, 2020. 240 с.

РЕАКТИВНОСТЬ СИСТЕМЫ МИКРОЦИРКУЛЯЦИИ И ФУНКЦИИ СОСУДИСТОГО ЭНДОТЕЛИЯ КАК ФАКТОРЫ ПОДДЕРЖАНИЯ ТКАНЕВОГО ГОМЕОСТАЗА В ДИНАМИКЕ ТРАНСМУРАЛЬНОГО ИНФАРКТА МИОКАРДА

Халепо О. В., Ивлева А. А.

Смоленский государственный медицинский университет, Смоленск, Россия

Введение. Система микроциркуляции за счет имеющихся резервных возможностей может компенсировать метаболические расстройства в тканях при развитии инфаркта миокарда (ИМ), что во-многом обусловлено включением компенсаторных резервов и особенностями локальных механизмов регуляции, в том числе со стороны эндотелиоцитов [2]. Однако механизмы активации резервных возможностей микроциркуляции и регуляторных влияний в динамике трансмурального ИМ изучены недостаточно.

Цель. Изучить реактивность системы микроциркуляции и механизмов ее регуляции, в том числе функциональной активности сосудистого эндотелия, в динамике трансмурального ИМ.

Методы исследования. Обследовано 54 пациента (средний возраст 59,09±1,2 лет) с первичным QS инфарктом миокарда на 3, 10, 21 сутки и через 3 месяца развития заболевания. В контрольную группу были включены 24 человека того же возраста (средний возраст 48,8±0,89 лет) без признаков тяжелой хронической патологии. Все пациенты дали добровольное информированное согласие на участие в исследовании.

Состояние кожной микроциркуляции изучали методом лазерной допплеровской флоуметрии с помощью аппарата ЛАКК-М (НПП «Лазма», Россия). Базальный кровоток регистрировали в течение 15 минут в зоне Захарьина-Геда для сердца на предплечье. Вейвлет-преобразование ЛДФ-грамм позволило оценить влияние отдельных механизмов регуляции на тонус микрососудов.