Гродненской области за 2010-2020 гг. / Е.Н. Алексо, С.Н. Демидик, Т.Г. Санукевич // Инновационные подходы к диагностике, лечению и профилактике туберкулеза и неспецефической респираторной патологии у взрослых и детей : материалы науч.-практ. онлайн конф., с международным участием (25 марта 2021 г.) ; под ред. Б.Т. Даминова. – Ташкент : Fan ziyosi, 2021. – С. 78–79.

2. Алексо, Е.Н. Влияние некоторых факторов на эффективность лечения туберкулеза с множественной лекарственной устойчивостью возбудителя/ Е. Н. Алексо [и др.] // Актуальныепроблемы медицины : сб. материалов итоговой научно-практической конференции (24 января 2020 г.) [Электронный ресурс] / отв. ред. В. А. Снежицкий. – Гродно : ГрГМУ, 2020. – Электрон. текст. дан. (объем 9,5 Мб). – 1 эл. опт. диск (CD-ROM). – С. 145–148.

ВЛИЯНИЕ ПРИСУТСТВИЯ ТРИПТОФАНА НА ЧУВСТВИТЕЛЬНОСТЬ МИКРООРГАНИЗМОВ РОДА *CANDIDA* К ДОКСИЦИКЛИНУ

Артюх Т.В., Островская О.Б., Случич О.И.

Гродненский государственный медицинский университет, Беларусь Кафедра микробиологии, вирусологии и иммунологии им. С.И. Гельберга

Актуальность. Большинство инфекций, вызываемых *C. albicans*, связаны с образованием биопленки на тканях организма-хозяина или на абиотических поверхностях. Образование биопленок, устойчивых ассоциаций микроорганизмов и окружающего их органического матрикса, представляет собой универсальный механизм формирования резистентности к лечебным препаратам и хронизации инфекционного процесса [1].

Устойчивость к противогрибковым препаратам обнаруживается в той или иной степени у всех клинически значимых видов *Candida*. Снижение чувствительности микроорганизмов в составе биопленки выявляет потребность в поиске препаратов активных в отношении биопленочных инфекций либо проявляющих синергетические эффекты в комбинациях с уже используемыми антимикробными препаратами [2].

По немногочисленным исследованиям, среди антибиотиков наиболее активным по отношению к микроорганизмам в составе биопленок является доксициклин [3]. Так как аминокислоты принимают участие в формировании клеточной стенки и контроле над планктонной и биопленочной формами существования, перспективным представляется исследовать аминокислоты на способность модулировать антибактериальный эффект доксициклина. Один из возможных механизмов действия аминокислот и антибиотика на биопленки заключается в том, что аминокислоты диспергируют микробную биопленку, высвобождая сидячие клетки, тем самым облегчая препарату более эффективное проникновение и уничтожение микроорганизмов [4, 5].

Цель. Изучить способность к формированию биопленки грибами рода *Candida*. Установить эффекты, которые оказывает триптофан на чувствительность микроорганизмов рода *C. albicans* к доксициклину в различных формах существования (планктонной, биопленочной).

Материалы и методы исследования. Объектом исследования являлись штаммы C. albicans 2924. На планктонную форму C. albicans воздействовали 3-мя вариантами десятикратных разведений: 1-доксициклин в концентрации (1000 - 0.1 мкг/мл); 2-триптофан (2000 - 0.2 мкг/мл); 3-доксициклин (1000 - 0.2 мкг/m); 3-доксициклин $(1000 - 0.2 \text$ 0,1 мкг/мл) + триптофан (2000 - 0,2 мкг/мл); МИК устанавливали по наименьшей концентрации препарата, которая подавляла видимый рост микроорганизма. Концентрацию микробных тел контролировали измерением оптической плотности растворов по шкале McFarland (McF) на детекторе мутности суспензий DEN-1 Biosan до и после инкубации 35±1°C, 24 часа. Затем проводили посев из пробирок на среду Сабуро в чашки Петри для регистрации бактерицидной концентрации оценки возможной минимальной И нежелательной мутности исследуемых соединений. Экспозиция 24 ч. при 35±1°C. Показатели бактериального роста выражали в ед. МсF (при необходимости результаты могут быть переведены в колониеобразующие единицы (КОЕ) в соответствии со стандартами мутности). Статистическую обработку полученных данных осуществляли с помощью пакетов прикладных программ Microsoft Excel 2010 И Statistica 10 использованием многофакторного дисперсионного анализа. Различия между сравниваемыми параметрами считали достоверными при р<0.05.

Биопленки выращивали В иммунологических планшетах использованием медных сеточек покрытых формваром для визуализации под Использовали микроскопом. суточную электронным микроорганизмов *C. albicans* в концентрации 0,5 ед. МсF. Для выращивания смешанных биопленок использовали суточную культуру E. coli и S. aureus так же в концентрации 0.5 ед. McF или 1.5×10^8 (КОЕ)/мл. В течение трех дней ежедневно проводили промывку лунок фосфатным буферным раствором (рН 7,2-7,4) для удаления планктонных клеток, затем вносили свежую питательную среду и продолжали инкубировать, а также делали отбор некоторых сеточек для ультраструктуры биопленки с помощью трансмиссионного исследования электронного микроскопа (ТЭМ). На четвертые сутки после очередной промывки в лунки добавляли 3 варианта воздействующих веществ. 1-двойные доксициклина (5000-600 мкг/мл); 2-триптофан разведениях (2000-250 мкг/мл); 3-доксициклин в двойных разведениях (5000-600 мкг/мл) + триптофан (1000 мкг/мл). Для определения МИК исследуемых веществ на микроорганизмы в составе биопленки применяли модификацию метода определения метаболической активности биопленок с использованием анализа восстановления XTT (2,3-бис (2-метокси-4-нитро-5-сульфофенил) -5- [карбонил (фениламино)] – 2Н-гидроксид тетразолия) на основе 1% резазурина. После экспозиции, в течении 24 часов делали промывку и вносили 1% раствор инкубации резазурина. После суточной регистрировали минимальную биопленкоингибирующую концентрацию (МБИК) исследуемых веществ.

Результаты. Эффекты присутствия триптофана на чувствительность планктонных форм C. albicans по отношению к доксициклину представлены на рисунке 1.

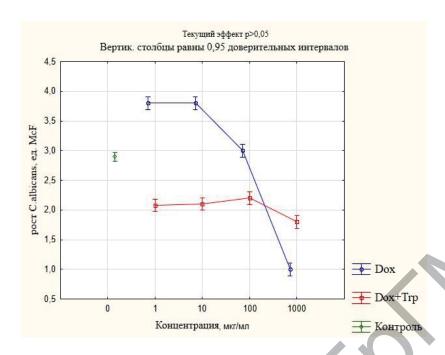


Рисунок 1. – График зависимости роста *C. albicans* от комбинаций препаратов и их концентраций.

МИК доксициклина (первый вариант воздействия) для C. albicans в планктонной форме = 1000 мкг/мл. При низких концентрациях (10-0.1 мкг/мл) доксициклина наблюдается увеличение клеток C. albicans до 3.8 ед. МсF по сравнению с контролем 2.9 ед. МсF (количество микроорганизмов без добавления веществ). Триптофан (второй препарат) стимулирует рост C. albicans во всех исследуемых концентрациях (2000-0.2 мкг/мл), 3.4 ед. МсF [4.2; 2.8] ед. МсF по сравнению с контролем 2.9 ед. МсF. МИК доксициклина в комбинации с триптофаном (третий вариант воздействия) >1000 мкг/мл. Это подтверждает эффект второго препарата: присутствие триптофана, повышает метаболическую активность кандид в планктонной форме и тем самым снижает антимикробную активность доксициклина.

Электронно-микроскопическое изучение микроорганизмов *C. albicans* показало, что они способны образовывать биопленки (рис. 2). Наиболее плотная биопленка сформировалась на четвертые сутки. На снимках ТЭМ видна адгезия клеток друг к другу и к поверхности формваровой пленки, а также продукция внеклеточного матрикса (рис. 2).

По результатам XTT анализа наблюдается снижение антимикробной активности доксициклина в присутствии триптофана в отношении биопленок *C. albicans* (табл. 1). В случае бактериостатического и бактерицидного действия препарата микроорганизмы не проявляют жизнедеятельности и цвет резазурина не изменился (синий), что позволяет говорить о ингибирующей концентрации доксициклина для *C. albicans* в составе моно- и микстбиопленки >2500 мкг/мл.

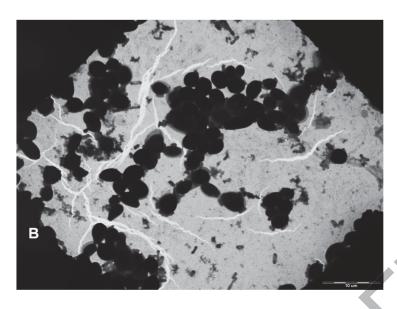


Рисунок 2. — Микстбиопленка *C. Albicans + E. coli* при воздействии смеси доксициклина 1200 мкг/мл и триптофана 1000 мкг/мг. Мерный отрезок равен 10 мкм.

В живых клетках митохондрии способны уменьшать количество растворенного субстрата с формированием водорастворимого ярко-розового красителя. Таким образом при устойчивости микроорганизма к препарату, индикатор изменяет цвет на розовый, это наблюдается при снижении концентрации доксициклина 1200-600 мкг/мл в первом варианте. При добавлении триптофана без доксициклина все разведения также имели розовый цвет. При добавлении триптофана к разведениям доксициклина все лунки также имели розовый цвет, что позволяет судить о снижении активности доксициклина в присутствии триптофана. МБИК доксициклина в комбинации с триптофаном >5000 мкг/мл.

Таблица 1. – XTT анализ, эффект триптофана на чувствительность C. albicans κ доксициклину в составе биопленок

Состав	Контроль	1. Dox	2. Trp	3. Dox 2500/1200
биопленки	(м/о без	2500/1200	1000/500	мкг/мл
	препаратов)	мкг/мл	мкг/мл	+Trp 1000 мкг/мл
N	3	3	3	3
C.albicans в составе	P	C*/P	P#/P	P#/P
монобиопленки				
C.albicans в составе	P	C*/P	P#/P	P#/P
микстбиопленки				

Примечание — P — розовый цвет; C — синий цвет; достоверные изменения в сравнении с контролем (*); с группой 1 мкг/мл (#).

Изучение биопленочных структур с использованием ТЭМ при воздействии концентрацией доксициклина 1000 мкг/мл, которая являлась ингибирующей для планктонных форм, продемонстрировало наличие микроорганизмов. Это подтверждает результаты ХТТ анализа, а так же других исследований о том, что МИК антибиотиков для планктонных форм

микроорганизмов в десятки раз меньше по сравнению с их пленочными аналогами [6].

Выводы

- 1. Исследуемые штаммы *C. albicans* 2924 способны образовывать зрелые биопленки на 4-5 сутки культивирования.
- 2. Триптофан в концентрации 2000 0,2 мкг/мл мкг/мл снижает антимикробную активность доксициклина по отношению к планктонным формам *C. albicans*.
- 3. Триптофан в концентрации 2000 250 мкг/мл по результатам изображений ТЭМ и ХТТ анализа способствуют формированию более плотной биопленки *C. albicans*.
- 4. Триптофан в концентрации 1000 мкг/мл снижает антимикробную активность доксициклина по отношению к моно- и микстбиопленкам C. albicans.

Литература

- 1. Candida albicans The Virulence Factors and Clinical Manifestations of Infection [Electronic resource] / Jasminka Talapko [et al.] // J Fungi (Basel). 2021. Vol. 7, iss. 2. Mode of access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912069/. Date of access: 26.09.2021.
- 2. The impact of the Fungus-Host-Microbiota interplay upon *Candida albicans* infections: current knowledge and new perspectives [Electronic resource] / Christophe d'Enfert [et al.] // FEMS Microbiol Rev. 2021. Vol. 45, iss. 3. Mode of access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100220/. Date of access: 30.09.2021.
- 3. An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans Staphyloccoccus aureus Biofilms / L. Lown [et al.] // PLoS One. 2016. Vol. 11, iss. 17.
- 4. Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro [Electronic resource] / X. Chen [et al.] // BMC Microbiol. 2020. Vol. 264. Mode of access: https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-020-01947-9. Date of access: 26.09.2021.
- 5. Characteristics and influencing factors of amyloid fibers in S. mutans biofilm [Electronic resource] / D. Chen [et al.] // AMB Express. 2019. Vol. 9, iss. 1. Mode of access: https://pubmed.ncbi.nlm.nih.gov/30820691/. Date of access: 29.06.2021.
- 6. Артюх, Т. В. Особенности резистентности клинических изолятов E.coli и C.albicans образующих биопленку / Т. В. Артюх, Т. Н. Соколова, О. Б. Островская // Вестн. ВГМУ. -2021.-T.20, № 1.-C.46-54.

ПЕРСИСТЕНЦИЯ КАК МЕХАНИЗМ УСТОЙЧИВОСТИ К АНТИБАКТЕРИАЛЬНЫМ ПРЕПАРАТАМ

Артюх Т.В., Соколова Т.Н., Сидорович Е.А.

Гродненский государственный медицинский университет, Беларусь Кафедра микробиологии, вирусологии и иммунологии им. С. И. Гельберга

Актуальность. Бактериальные клетки преодолевают негативное влияние антибиотиков используя возможности механизмов резистентности и персистенции. Явление персистенции было открыто в 1944 г. на заре массового