УДК (616.24-002.5-06:615.33):616.36-002-099-06

КЛИНИКО-ЛАБОРАТОРНАЯ ДИАГНОСТИКА ГЕПАТОКСИЧЕСКИХ РЕАКЦИЙ НА ПРОТИВОТУБЕРКУЛЕЗНЫЕ ПРЕПАРАТЫ

С.Б. Вольф, зав. кафедрой, к.м.н.

Кафедра фтизиатрии с курсом профпатологии УО «Гродненский государственный медицинский университет»

Полученные данные свидетельствуют о повышенной поражаемости печени при полихимиотерапии туберкулеза. В результате развиваются гепатотоксические реакции с явлениями цитолиза гепатоцитов и холестаза, снижается белковосинтезирующая и детоксицирующая функции печени. Сопутствующая патология печени и алкоголизм способствуют развитию таких реакций.

Ключевые слова: полихимиотерапия, туберкулез, побочные реакции, противотуберкулезные препараты. The received data prove the high incidence of the liver injury in polychemotherapy of tuberculosis. As a result, hepatotoxic reactions with cytolysis of hepatocytes and cholestasis develop, protein synthesizing and detoxicating function of the liver decreases. An accompanying pathology of the liver and alcoholism contribute to the development of such reactions.

Key words: polychemotherapy, tuberculosis, side effects, antituberculous drugs.

Лекарственные поражения печени - одна из серьезных проблем гепатологии. С предшествующим воздействием лекарственных средств связано 25% всех случаев фульминантного гепатита. Постоянно расширяется спектр препаратов, вызывающих поражение печени: в 1991 г. имелись сведения о 748 таких средствах, в 1992 г. – 808 [6]. Метаболизм лекарств в печени зависит от активности участвующих в нем ферментов, скорости печеночного кровотока, способности лекарств связываться с белками плазмы. Ряд лекарственных препаратов и веществ способствуют индукции ферментов и быстрому образованию токсических метаболитов, вызывающих дозозависимое повреждение гепатоцитов. Снижение уровня связывания лекарств с белками плазмы и ограничение их доставки в гепатоциты, где происходит их метаболизм, также повышает риск развития различных лекарственных осложнений. Снижение печеночного кровотока изменяет метаболизм лекарств, повышая их концентрацию в крови, ведя к передозировке препарата. Генетические нарушения в ферментативных системах приводят к формированию токсических метаболитов и развитию лекарственного поражения печени. Риск развития лекарственного поражения печени возрастает при наличии хронического диффузного заболевания органа любой этиологии [1, 2, 3]. Различия механизмов лекарственного поражения печени обуславливают большое разнообразие клинических проявлений от незначительного повышения активности аминотрансфераз до острого гепатита и декомпенсированного цирроза печени.

Повреждение печени может происходить путем прямого токсического действия на гепатоцит и его ферментные системы (за счет индукции ферментов и снижения уровня глутатиона, играющего роль

в детоксикации веществ), а также в ходе реакций идиосинкрозии.

Проблема борьбы с туберкулезом продолжает оставаться актуальной и в настоящее время. Увеличение заболеваемости туберкулезом, рост числа остропрогрессирующих форм, сопутствующих заболеваний, снижение лекарственной чувствительности микобактерий туберкулеза к противотуберкулезным препаратам (ПТП) ведет к ухудшению эффективности лечения. В этих условиях в практику фтизиатра введен метод полихимиотерапии т. е. одновременное использование в лечении больного туберкулезом 4-5 антибактериальных препаратов в течении нескольких месяцев. Эффективность эрадикации туберкулезной инфекции лимитируется побочными явлениями на ПТП. Существенным негативным моментом является токсическое поражение печени и развитие лекарственных гепатитов, требующих изменения схемы специфической химиотерапии и порой негативно влияющих на процесс выздоровления больных туберкулезом. При лечении туберкулеза на печень приходится большая нагрузка ввиду длительности и массивности химиотерапии, а также гепатотоксичности ряда используемых препаратов (изониазида, рифампицина, пиразинамида). Уже сама туберкулезная интоксикация создает предпосылки для поражения печени, угнетая ферментативную активность и гликогенообразование, ведя к нарушениям синтеза белка и в ряде случаев к жировой дистрофии и амилоидозу [12].

Данные о частоте лекарственных гепатитов у больных туберкулезом немногочисленны и противоречивы. У 1-10% больных возникают повреждения печени в процессе химиотерапии [11, 1, 12].

В то же время В.В. Ерохин с соавт. приводит данные о диагностике лекарственного гепатита на

основании комплексного клинико-морфологического исследования у 16,3% больных, лечившихся от туберкулеза органов дыхания [2]. Некоторые авторы считают, что у 15-20% пациентов, получающих изониазид для профилактики туберкулеза, отмечается умеренное повышение уровня АСТ и АЛТ сыворотки крови [4]. Одновременный прием алкоголя усиливает токсичность изониазида. Среди больных туберкулезом доля лиц, злоупотребляющих алкоголем, составляет, по разным оценкам, 30-60% [8]. У части больных туберкулезом легких развиваются специфические и параспецифические изменения в других органах, в том числе и в печени. Следует отметить, что у больных туберкулезом возможно сочетание 2 или 3 факторов, вызывающих поражение печени [7, 5, 3].

Целью настоящего исследования явилось изучение клинической картины и характера лабораторных показателей, лекарственного поражения печени у больных туберкулезом легких на фоне стандартных схем химиотерапии.

Под нашим наблюдением находилось 228 больных туберкулезом органов дыхания в возрасте от 20 до 65 лет. Основную массу пациентов (94,6%) составили мужчины в возрасте от 30 до 60 лет. В структуре клинических форм туберкулеза преобладал инфильтративный туберкулез – 115 пациентов (50,4%), значительную часть занимали больные с очаговым (20,1%) и диссеминированным туберкулезом – 36 больных (15,9%). Прочие формы составили 13,6%, среди них: фиброзно-кавернозный туберкулез встречался у 16 пациентов (7%), цирротический – у 3 (1,3%) человек, туберкулома - у 7 (3%) и казеозная пневмония - у 5 (2,3%) заболевших. Почти у половины больных (47,8%) туберкулезный процесс ограничивался в пределах одной доли легкого, у 93 пациентов (40,4%) заболевание локализовалось в пределах двух долей, а у 26 (11,4%) процесс занимал более двух долей легких. При обследовании мокроты различными методами у 129 заболевших (56,6%) были обнаружены микобактерии туберкулеза. Клинические проявления интоксикации выраженного характера отмечены у 26,8% больных, умеренного – у 35,5% и отсутствовали – у 37,7% заболевших. Среди обследованных впервые туберкулез легких установлен у 174 (76,3%) человек, рецидив заболевания у 32 (14%) и у 22 больных (9,7%) он приобрел хроническое течение. При рентгенологическом обследовании деструктивные изменения в легких выявлены у 127 (55,7%) больных. Все пациенты находились на стандартной схеме химиотерапии с применением 3 противотуберкулезных препаратов (ПТП): изониазида, рифампицина и пиразинамида у 21,9 пациентов, 4 ПТП: изониазида, рифампицина, пиразинамида и стрептомицина или этамбутола у 61,4% и 5 ПТП: изониазида, рифампицина, пиразинамида, стрептомицина и этамбутола у 16,7% заболевших.

В дальнейшем все больные разделились на 2 группы. В первую группу вошло 154 пациента, у которых в процессе химиотерапии не выявлено побочных реакций, во вторую включены 27 больных, у которых были выявлены гепатотоксические реакции на ПТП различного характера и степени тяжести. Всем обследованным в динамике проводилось клиническое, рентгенологическое и бактериологическое обследование. Наряду с этим в динамике определялось содержание в крови общего билирубина, активность аспарагинаминотрансферазы (АСТ) и аланинаминотрансферазы (АЛТ), уровень тимоловой пробы, общего белка и его фракций, HbsAg, HCV, HBV, HAV. Активность ферментного комплекса мембран эндоплазматической сети гепатоцитов оценивалась по антипириновому тесту (АТ) [10]. Известно, что глутатион прямо или косвенно принимает участие во многих важных биологических процессах, в том числе участвует в метаболизме ксенобиотиков, повышает устойчивость клеток к вредным воздействиям. Содержание восстановленного глутатиона GSH в эритроцитах изучали по реакции взаимодействия SH-групп глутатиона с 5,5 дитиобис (2-нитробензойной кислоты).

Результаты исследования обрабатывались с помощью компьютерной программы «Statistica 5» с использованием t-критерия Стьюдента.

Результаты и обсуждения

На фоне проводимой полихимиотерапии у 27 больных выявлены изменения функции печени. Эти изменения варьировали от незначительных и кратковременных сдвигов биохимических показателей до выраженной клинико-биохимической картины поражения печени по типу острого лекарственного гепатита. Среди больных, у которых развились гепатотоксические реакции (ГР), преобладали мужчины (22 чел. -81,5%), преимущественно в возрасте от 35 до 60 лет. У 14 заболевших ГР протекали с выраженными клиническими (тяжесть в правом подреберье, горечь во рту, желтушность кожных покровов, отсутствие аппетита, диспепсические расстройства, увеличение печени) и биохимическими проявлениями (повышение общего билирубина крови до 64 мкМоль/л увеличение АЛТ в 3 раза, АСТ в 2,5 раза, тимоловой пробы в 2 раза). В то же время, у 13 больных клинико-биохимические изменения были менее выражены, из них у 10 обследованных ГР протекали с минимальными клиническими проявлениями и выявлялись лишь при комплексном обследовании. В зависимости от развития либо отсутствия гепатотоксических реакций (ГР) на ПТП больные разделились на 2 группы. Динамика биохимических показателей у этих больных в процессе химиотерапии представлена в таблице 1.

Как правило, лекарственные поражения печени развивались на первом месяце полихимиотерапии.

До лечения показатели «печеночных проб» (билирубина, АЛТ, АСТ, тимоловой пробы) в группе больных с лекарственным поражением печени были несколько выше, чем в группе больных без таковых. Однако достоверных различий между ними не выявлено. В процессе химиотерапии отмечается незначительное повышение уровня билирубина, активности АЛТ, АСТ, тимоловой пробы у больных без токсического поражения печени. И все же достоверных различий с их исходными значениями не выявлено.

Анализируя вышеуказанные показатели в группе больных с побочными действиями ПТП, выявлены более значимые изменения. Так, содержание билирубина в плазме достоверно повысилось в процессе лечения с 15,96±2,11 мкМоль/л до 29,13±3,18 мкМоль/л, активность АЛТ возросла более, чем в 2,5 раза, АСТ в 2 раза. Тимоловая проба увеличилась с 3.28 ± 0.5 ед до 6.44 ± 0.63 ед, р<0,05. Через месяц химиотерапии указанные показатели в этой группе больных достоверно были выше в сравнении с таковыми у больных без токсического поражения печени. Содержание общего белка у больных обеих групп исходно было достоверно снижено в сравнении со здоровыми 68,3±3,12 Γ/π и 69,06 \pm 2,78 Γ/π , соответственно, и 77,81 \pm 3,44 г/л у здоровых лиц.

В процессе химиотерапии по мере ликвидации интоксикационного синдрома уровень общего белка в плазме крови больных без негативных реакций увеличился с 69,06±2,78 г/л до 78,81±2,88 г/л и достоверно не отличался от уровня у здоровых лиц. Характерно и достоверное увеличение процента альбуминов с 32,88±2,06% до 39,28±1,84%. В группе больных с негативными эффектами на ПТП динамики уровня белка и процента альбуминов не отмечено.

Таким образом, негативные реакции со стороны печени на ПТП характеризуются нередко гепатолитическими поражениями, с явлениями холестаза и нарушениями функции органа. Для изучения лекарственно-детоксицирующей функции печени нами был использован антипириновый тест, позволяющий оценить активность ферментативного комплекса эндоплазматической сети гепатоцитов. По скорости убыли антипирина из крови можно судить об интенсивности микросомального окисления в печени. Результаты исследования представлены в таблице 2.

У больных обеих групп значения периода полуэлиминации (Т 1/2) и константы скорости элиминации (Kel) до лечения одинаковы и достоверно не различимы со сходными показателями у здоровых лиц. В дальнейшем, на фоне проводимой химиоте-

Таблица 1. Динамика биохимических показателей у больных туберкулезом в процессе химиотерапии при развитии гепатотоксических реакций и без них

	Наименование показателя							
Группы	Билирубин (общ)	АЛТ	ACT	Тимоловая проба	Общий белок	Альбумины		
	мкМоль/л	мМоль/ч.л.	мМоль/ч.л.	ед.	г/л	%		
Здоровые n=35	11,37±2,34	0,38±0,07	0,31±0,06	2,9±0,71	77,81±3,44	46,53±2,21		
Больные туберкулезом с наличием гепатотоксических реакций n=27								
до лечения	15,96±2,11	$0,49\pm0,06$	$0,41\pm0,04$	3,28±0,5	*68,3±3,12	*31,56±2,08		
через 1 мес. лечения	*29,13±3,18	*1,3±0,08	*0,88±0,07	*6,44±0,63	*61,48±2,84	*30,5±2,11		
p	< 0,05	< 0,05	< 0,05	< 0,05	>0,05	>0,05		
Больные туберкулезом без наличия гепатотоксических реакций n=35								
до лечения	12,06±2,44	$0,39\pm0,03$	$0,34\pm0,05$	2,87±0,4	*69,06±2,78	*32,88±2,06		
через 1 мес. лечения	18,37±2,7	0,51±0,06	0,49±0,09	4,11±0,61	78,81±2,88	*39,28±1,84		
p	>0,05	>0,05	>0,05	>0,05	<0,05	<0,05		

р – достоверность различий между значениями до лечения и через 1 месяц лечения

Таблица 2. Динамика показателей антипиринового теста и уровня глутатиона (GSH) у больных туберкулезом в процессе химиотерапии с наличием гепатотоксических реакций и без них

	Антип	Уровень глутатиона (GSH)					
Группы	период полуэлиминации	константа скорости элиминации	мкМоль/мл эр. массы				
	Т Ѕ час	Kel (ч ⁻¹)					
Здоровые n=35	10,7±1,14	56,9±4,51	2,42±0,09				
Больные туберкулезом с наличием гепатотоксических реакций n=27							
до лечения	12,2±1,91	68,11±5,44	2,3±0,09				
через 1 мес. лечения	24,16±1,72*	44,21±3,67*	2,04±0,08*				
p	<0,05	<0,05	<0,05				
Больные туберкулезом без наличия гепатотоксических реакций n=35							
до лечения	11,7±1,84	59,8±5,19	2,32±0,09				
через 1 мес. лечения	16,8±2,05	49,7±5,33	2,27±0,07				
p	>0,05	>0,05	>0,05				

р – достоверность различий между значениями до лечения и через 1 месяц лечения

^{* -} достоверность различий в сравнении со здоровыми

^{* -} достоверность различий в сравнении со здоровыми

рапии между группами появились различия. Так, в группе больных с ГР период полувыведения антипирина увеличился вдвое и стал достоверно отличаться от исходных данных. Константа скорости выведения антипирина напротив снизилась с 68,11±5,44 ч⁻¹ до 44,21±3,67 ч, р<0,05. Все это позволяет считать, что скорость микросомального окисления гепатоцитов у этих больных снижается, снижая тем самым детоксицирующую функцию печени по отношению к ксенобиотикам. В группе больных без ГР на фоне лечения также имеется схожая тенденция (увеличение Т 1/2 и Kel), однако достоверных изменений с исходными их значениями не выявлено.

Известно, что поражения печени, вызванные изониазидом, возникают в случае потери гепатоцитами значительного количества восстановленного глутатиона [13]. Нами проанализирован в динамике уровень восстановленного глутитиона у больных туберкулезом по мере развития ГР и без таковых. В таблице 2 представлены результаты проведенного исследования. До лечения уровень глутатиона у больных в обеих группах достоверно не отличался между собой и в сравнении со здоровыми. В процессе лечения ПТП у больных с ГР уровень восстановленного глутатиона снизился с $2,30\pm0,09$ мкМоль/мл эр. массы до $2,04\pm0,08$ мкМоль/мл эр. массы, р<0,05 и стал достоверно ниже в сравнении со здоровыми. В группе больных туберкулезом, где ГР не развились, достоверных изменений в значении восстановленного глутатиона не отмечалось.

Существенной предпосылкой для развития медикаментозных поражений печени является наличие у больных туберкулезом сопутствующих заболеваний печени. Побочные реакции со стороны печени чаще возникают у пациентов, страдающих алкогольной зависимостью. Проведенный ретроспективный анализ больных из вышеуказанных групп показал, что среди пациентов, у которых развились ГР на ПТП, у 21 больного (77,8%) имелись те либо иные заболевания печени и ЖКТ (хронический персистирующий гепатит, хронический вирусный гепатит, цирроз печени, язвенная болезнь желудка, хронический гастрит, хронический холецистит). Алкогольной зависимостью в этой группе страдали 14 из 27 больных (51,8%). В группе больных без ГР число пациентов, страдающих патологией печени и ЖКТ, было достоверно меньшим, 6 из 35 обследуемых (17,1%). Лиц с алкогольной зависимостью в указанной группе также было значительно меньше, 5 из 35 обследуемых (14,3%), р<0,05 в сравнении с группой больных с ГР.

Приведенные данные свидетельствуют о повышенной поражаемости печени при полихимиотерапии туберкулеза, особенно у больных с предшествовавшей патологией печени, ЖКТ и страдающих зависимостью от алкоголя. У значительного

числа таких больных в силу снижения адаптационной способности печени к воздействию ПТП фармакологический эффект последних становится неблагоприятным, принимая характер непереносимости. На фоне применения ПТП могут развиваться ГР с явлениями цитолиза гепатоцитов и холестазом, нарушая белково-образующую и лекарственно-детоксицирующую функции печени.

Литература

- 1. Елькин А. В., Ариэль Б. М., Нечаев В. В. Диагностика гепатопатий у больных туберкулезом легких // Проблемы туберкулеза. – 1992. - № 7-8. – С. 15-18.
- 2. Ерохин В. В., Панасек И. А., Адамович Н. В. Клинико-морфологические критерии лекарственного гепатита у больных туберкулезом легких // Проблемы туберкулеза. 1991. № 1. С. 35-41.
- Карачунский М. А., Каминская Т. О., Коссий Ю. Е. Функция печени на этапе интенсивной терапии туберкулеза у больных сахарным диабетом // Проблемы туберкулеза. – 2000. - № 6. – С. 39-41
- Катикова О. Ю., Асанов Б. М., Визе-Хрипуново М. А., Бурба Е. Н., Рузов В. И. Использование гепатопротектора растительного происхождения галстены при поражениях печени туберкулостатиками // Проблемы туберкулеза. – 2002. - № 7. – С. 32-36.
- Краснов В. А., Роньжина Е. Г., Петренко Т. И., Романов В. В., Харламов Ю. М. и др. Особенности течения туберкулеза у больных с патологией печени // Проблемы туберкулеза. – 2003.
 № 4. – С. 26-27.
- Лопаткина Т., Бурневич Э. Лекарственные поражения печени / / Врач. – 2003. - № 11. – С. 18-20.
- Мухтаров Д. 3. Гепаторенальные корреляции у больных туберкулезом легких с наличием маркеров вирусного гепатита В и хлорорганических пестицидов по данным радионуклидных исследований. Проблемы туберкулеза. – 2000. - № 6. – С. 47-48.
- Рудой Н. М., Чубаков Т. И. Туберкулез легких и алкоголизм. М., 1985. -270 с.
- Сливка Ю. И., Климнюк Е. В., Табачук О. Е. О гепатотоксическом действии сочетаний пиразинамида с изониазидом и рифампицином // Проблемы туберкулеза. – 1989. - № 4. – С. 39-42.
- 10. Цыркунов В. М., Бушма М. И., Гарелик П. В., Богуцкий Н. И., Заводник Л. Б., Зверинский И. В. Антипириновый тест: Методические рекомендации // Новости гепатологии и медицины. – 1997. - № 2. – С. 34-42.
- Шестерина М. В. Побочное действие туберкулостатических препаратов. – М., 1983. – С. 3-10.
- 12.Шмелев Н. А., Степанян Э. С. Побочное действие противотуберкулезных препаратов. М., 1977. С. 139-150.
- 13.Galle P. R., Tveilmann L., Raedsch R., Otto G., Stiehl A. Ursodeoxycholate reduces hepatotoxity of bile salts in primary human hepatocytes // Hepatology. 1990. № 12. P. 486-491.

Resume

CLINICOLABORATORY DIAGNOSTIC OF HEPATOTOXIC REACTIONS TO ANTITUBERCULOUS DRUGS

S. B. Volf

GSMU, Grodno, Belarus

Indices of the liver function in tuberculous patients on chemotherapy have been studied. It has been estimated that the development of side-effects of antituberculous drugs has a negative influence on the liver function.

Поступила 30.06.05