АНАЛИЗ УРОВНЯ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ СТУДЕНТОВ МЕДИЦИНСКОГО ВУЗА

Карпович О.В.

УО «Гродненский государственный медицинский университет» г. Гродно, Республика Беларусь

Разнообразие форм современногообразования сопровождается непрерывным увеличением учебной нагрузки, интенсификацией процесса обучения, расширением спектра изучаемых дисциплин, что приводит к сокращению продолжительности сна, появлению постоянного психоэмоционального напряжения. Вместе с тем, к числу факторов, ухудшающих здоровье молодежи, относятся неадекватное питание, вредные привычки, воздействие неблагоприятных экологических и биологических факторов, а также недостаточная двигательная активность, состояние физического здоровья.

Цель работы: провести анализ уровня физической работоспособности студентов медицинского ВУЗа для оценки компенсаторных возможностей организма путем проведения функциональной пробы с последующим анализом результатов обследования.

Материалы. Для изучения физической работоспособности использовалась проба Штанге, которая позволяет оценить состояние дыхательной системы и системы кровообращения и заключается в регистрации продолжительности производимой задержки дыхания после максимального вдоха. Данная проба используется как для суждения о кислородной обеспеченности организма, так и для оценки общего уровня тренированности человека.

С целью изучения уровня физической работоспособности студентов было обследовано 65 студентов 2 курса лечебного факультета Гродненского государственного медицинского университета в возрасте 18-20 лет.

Испытуемым предлагалось после 5 минут отдыха, сидя, сделать 2-3 глубоких вдоха и выдоха, а затем, сделав глубокий вдох (80-90% максимального), задержать дыхание. При этом рот должен быть закрыт и нос зажат пальцами. Время фиксировалось от момента задержки дыхания до его возобновления по секундомеру.

Оценка функциональной подготовленности была проведена с помощью параллельного 3-разового измерения показателей: до начала исследования, сразу после глубокого выдоха и спустя 1-2 минуты после выполнения пробы. В ходе выполнения исследования были осуществлены замеры следующих показателей: число сердечных сокращений (ЧСС), артериальное давление (АД), в том числе систолическое (СД) и диастолическое (ДД), частота дыхательных движений (ЧДД).

На основании полученных данных рассчитывались следующие коэффициенты:

- 1. Индекс Кердо = ДД/ЧСС.
- 2. Коэффициент эффективности восстановления дыхательной деятельности (КЭВД), определяемый как отношение разницы между частотой дыхательных движений сразу после возобновления дыхания после задержки (ЧДД₂) и спустя минуту (ЧДД₃) и разницы между частотой дыхательных движений (ЧДД₂) сразу после глубокого выдоха и перед началом пробы (ЧДД₁) по следующей формуле:

 $KЭВД = (ЧДД_2-ЧДД_3)/(ЧДД_2-ЧДД_1).$

Результаты исследования. По результатам параллельного 3разового измерения рассчитаны средние значения исследуемых показателей: частота сердечных сокращений до начала исследований составила 78 ± 0.98 ударов в минуту, после глубокого выдоха -80 ± 0.97 ударов в минуту и спустя 1-2 минуты после выполнения пробы -79 ± 0.91 ударов в минуту; артериальное давление систолическое до исследования – 117±1,02 мм рт. ст., диастолическое - $71\pm0,96$ мм рт. ст., после выдоха СД - $119\pm1,15$ мм рт. ст., ДД - 72±0,95 мм рт. ст. и через 1-2 минуты СД - 117±1,01 мм рт. ст. и ДД - 72±0,98 мм рт. ст.; частота дыхательных движений до исследования $-19\pm0,42$ в минуту, после выдоха $-22\pm0,46$ в минуту и через 1-2 минуты $-20\pm0,43$ в минуту. Установлено, что при проведении пробы у испытуемых максимальная частота пульса составляла 100 ударов в минуту, максимальные цифры систолического давления не превышали 150 мм рт. ст., высота значений частоты дыхательных движений находилась в пределах 30 в минуту. По окончании пробы (задержки дыхания) частота сердечных сокращений нормализовалась, показатели артериального давления и частота дыхательных движений возвратились к исходным показателям.

При проведении оценки реакции пульса установлено, что его частота достоверно не изменилась после проведения пробы.

Анализ литературы свидетельствует, что здоровые нетренированные люди задерживают дыхание на вдохе в течение 40-50 секунд, а спортсмены – от 60 секунд до 2-3 мин. С нарастанием тренированности время задержки дыхания возрастает, при заболеваниях или переутомлении это время снижается до 30-35 секунд. Недостаточная физическая готовность считается, если время задержки дыхания составляет менее 50 секунд, средняя физическая готовность – 65-75 секунд, достаточная физическая готовность - более 80 секунд [1]. Установлено, что у 18,46% обследованных время задержки дыхания составило менее 30 секунд, у 47,69% - 31-50 секунд, у 16,92% - 51-75 секунд и у 16,93% - более 80 секунд.

Известно, что у здоровых людей индекс Кердо близок к единице. При нарушении нервной регуляции системы кровообращения он становится больше или меньше единицы [2]. В процессе исследования среднее значение индекса составило 0,9092, что свидетельствует о стабильности механизмов нервной регуляции сердечной деятельности.

Исследователями показано, что коэффициент эффективности восстановления дыхательной деятельности помогает оценить механизмы адаптации, уровень работоспособности. Установлено, что среднее значение данного коэффициента составило 0,726, соответствует норме и свидетельствует об эффективности восстановления дыхательной деятельности.

Заключение. Таким образом, компенсаторные возможности обследуемых студентов достаточные, что свидетельствует о высоком уровне физической работоспособности.

Литература

- 1. Губарева, Л.И. Экология человека: практикум / Л.И. Губарева, О.М. Мизирева, Т.М. Чурилова. М.: Владос, 2005. 112 с.
- 2. Пивоваров, Ю.П. Гигиена и основы экологии человека: учебник для студ. высш. мед. учеб. заведений / Ю.П. Пивоваров, В.В. Королик, Л.С. Зиневич; под ред. Ю.П. Пивоварова. 4-е изд., испр. и доп. М.: Издательский центр «Академия», 2008. 528 с.

ПОНИМАНИЕ ПРОБЛЕМ ВИДЕОЭКОЛОГИИ В ЭКОСИСТЕМЕ СОВРЕМЕННОГО ГОРОДА СТУДЕНТАМИ МЕДИЦИНСКОГО ВУЗА

Карпович О.В., Зиматкина Т.И. УО «Гродненский государственный медицинский университет» г. Гродно, Республика Беларусь

В настоящее время в экологии человека одним из самых проблемных направлений является видеоэкология, изучающая взаимодействие человека с окружающей визуальной средой, т.е. той средой, которую он воспринимает через органы зрения [1]. Условно всю видимую среду можно разделить на естественную и искусственную. К первой относятся лес, луг, поле, долина реки, берег озера или моря и т.д. Параметры и характеристики этой среды соответствуют физиологическим механизмам зрения и благоприятно влияют на здоровье человека. Следует отметить, что человек разумный, как биологический вид, сформировался в условиях визуально сложной и гетерогенной, т.е. насыщенной множеством разнообразных элементов, природной среды. В отличие от многих видов млекопитающих, зрение было для человека основным каналом, по которому поступала к нему информация о меняющемся окружающем мире.

В связи с освоением людьми различных экосистем земного шара объем поступающей в мозг информации постоянно возрастал, и глаза человека приспособились к успешному функционированию в таких оптически сложных средах, как предгорья, долины крупных рек, берега морей и океанов, лиственные, смешанные и таежные леса. Высокая сенсорная нагрузка стала