- 4. El-Galley RES, Keane TE. Embryology, anatomy, and surgical applications of the kidney and ureter. Surg Clin North Am, 80, 2000: 381-401.
- 5. Glass J ed. Kidney and Ureter. In: Standring S, ed. Gray's Anatomy. 39th ed. Churchill Livingstone: London; 2005. p. 1274-6.
- 6. Kadir S. Kidneys. In: Kadir S ed. Atlas of normal and variant angiographic anatomy. Saunders, Philadelphia, 1991, pp. 387-428.
- 7. Кирпатовский И. Д., Черкасова М. Е., Комиссаров Б. П. В кн.: Материалы IV Всесоюзной конференции по трансплантации органов и тканей. М., 1966, 15-16.
- 8. Мочалов О. Индивидуальная изменчивость архитектоники кровеносных сосудов почки. Автореферат диссертации доктора медицинских наук. Кишинев, 2006. с. 17.
- 9. Saldarriagal B., Pérez A.F., Ballesteros L.E. A direct anatomical study of additional renal arteries in a Colombian mestizo population. // Folia Morphol. Vol. 67 (2), pp. 129-134.
- 10. Saldarriaga B., Pinto S.A., Ballesteros L.E. Morphological expression of the renal artery. A direct anatomical study in a Colombian half-caste population. // Int. J. Morphol., 26(1):31-38, 2008.
- 11. Tarzamni M.K., Nezami N.. Rashid R.J., Argani H., Hajealioghli P., Ghorash S. Anatomical differences in the right and left renal arterial patterns. // Folia Morphol. Vol. 67 (2), pp. 104-110.
- 12. Ragiba Zagyapan, Can Pelin, Ayla Kürkçüoglu. A retrospective study on multiple renal arteries in Turkish population. // Anatomy 2009 (Online Preprint Issue).

МОРФОФУНКЦИОНАЛЬНЫЕ ПОКАЗАТЕЛИ ГРЕБЦОВ НА БАЙДАРКАХ И КАНОЭ ШКОЛЫ ОЛИМПИЙСКОГО РЕЗЕРВА ГОРОДА МОЗЫРЯ Пикуза Н.Э., Жданович А.В.

Гомельский государственный медицинский университет, Беларусь Научный руководитель – к.м.н., доцент В.Н Жданович

Вопросы адаптации к физическим нагрузкам, или «тренированности», с давних пор привлекают внимание специалистов, и в настоящее время остаются одной из важнейших проблем теории и методики спортивной тренировки. Суть её заключается в раскрытии механизмов, за счет которых нетренированный организм спортсмена становится тренированным, т.е. механизмов, лежащих в основе формирования положительных сторон адаптации, обеспечивающих тренированному организму преимущества по сравнению с нетренированным [1,2].

Гребля на байдарках относится к виду спорта с преимущественным проявлением многофакторного физического качества выносливости, обеспечивающего высокую работоспособность организма за счет морфофункциональной специализации скелетных мышц – повышением их силовых и окислительных свойств [3; 6].

Нами предполагается, что результаты настоящего исследования могут стать теоретической основой в определении специальной силовой подготовленности

гребца, обязательно включатся в программу ее этапного контроля. Возможно, отдельные морфофункциональные характеристики являются доминирующими предпосылками силовых способностей, влияющих на спортивную результативность при разных видах гребли.

Методы исследования включали антропометрию ряда морфологических показателей и измерение функциональных параметров, определяющих проявление максимальной мышечной силы, скоростно-силовых способностей отдельных мышечных групп. Исследования проводились на базе медицинского диспансера школы олимпийского резерва города Мозыря. В результате проведенных исследований установлено, что под влиянием многолетней спортивной тренировки с преимущественным проявлением выносливости в организме гребцов на байдарках развивается комплекс адаптационных изменений анатомических и функциональных показателей. Сравнительный анализ показателей физического развития гребцов, представленный в таблицах 1 и 2, свидетельствует о высоком их уровне. При этом показатели физического развития исследуемых спортсменов в целом соответствуют антропометрическим величинам гребцов-байдарочников стран СНГ [4; 7]. Отбор для занятий греблей осуществлялся по общепринятым критериям: высокий рост, массивность костного аппарата. Массивный и прочный скелет создает условия в развитии и передаче усилий с лопасти весла на опору, обеспечивая большую надежность и жесткость «биомеханической конструкции» [6].

Таблица 1 — Антропометрические и функциональные показатели юношей на байдарках и каноэ школы олимпийского резерва (г. Мозырь, Республика Беларусь)

Воз-	ЖЕЛ	Bec	Рост	Окружность грудной клетки				Динамометрия		
раст				вдох	вы-	пауза	раз-	правая	левая	ста-
					дох		мах	кисть	кисть	новая
14	5,15	65,7	174,5	98,2	87,7	88,7	10,5	36,5	31,5	131,2
15	5,02	69,6	178,6	97,8	86,6	87,8	11,2	41,5	40,4	133,7
16	5,58	76,2	180,2	104,8	94,0	95,2	10.8	48,0	47,2	159,0

Таблица 2 – Антропометрические и функциональные показатели девушек на байдарках и каноэ школы олимпийского резерва (г. Мозырь, Республика Беларусь)

Возраст	ЖЕЛ	Bec	Рост	Окружность грудной клетки				Динамометрия		
				вдох	выдох	пауза	размах	правая	левая	стано-
								кисть	кисть	вая
15	4,08	64,2	169,8	93.2	83,4	84,5	9,8	27,6	26,7	79,2
16	4,26	61,8	169,4	92,8	81,0	82,0	11,8	30,0	26,4	93,3

Динамику веса тела в возрастных группах можно рассматривать как линейное увеличение с возрастом и ростом уровня спортивной подготовленности. При этом следует отметить, что программы учебно-тренировочных занятий не акцентировались на анаболитические нагрузки, т.е. не ставилась задача чрезмерного увеличения общей мышечной массы общесиловыми средствами и атлетической гимнастикой до 16–17 лет.

При исследовании функционального состояния кистевой динамометрии видно, что показатели левой кисти меньше, чем правой. Такие результаты кистевой динамометрии могут свидетельствовать о высоком развитии кистевой мускулатуры у гребцов, особенно правой кисти. Наибольший прирост абсолютной и относительной становой и кистевой силы наблюдался в возрасте 16 лет. Увеличение относительной силы и атлетизма с возрастом обусловлено быстрыми темпами совершенствования нервной регуляции произвольной мышечной деятельности, а также изменением биохимического состава и морфологической структуры мышц, повышающими функциональную мощность опорно-двигательного аппарата (ОДА) и обеспечивающими его устойчивое и экономное функционирование при мышечной работе [8]. Кроме того, произошедшие структурные изменения в моторном отделе ЦНС создают возможность мобилизовать большее число моторных единиц при выполнении специфической работы и способствуют совершенствованию межмышечной координации.

При исследовании функционального состояния внешнего дыхания и изменений его под влиянием тренировки определяется жизненная емкость легких (ЖЕЛ). Величина ЖЕЛ является важным показателем функциональных возможностей внешнего дыхания, поэтому, чем больше величина ЖЕЛ, тем больше возможностей у спортсменов для увеличения вентиляции легких при физических нагрузках. По результатам исследования видно, что наибольшие показатели ЖЕЛ наблюдаются у юношей в возрасте 16 лет.

Сравнение полученных результатов исследования выявило определенные половые различия в средних величинах основных морфофункциональных показателей. По сравнению с гребцами мужского пола у спортсменок длина тела меньше на 8–9 см, масса тела на 5–14 кг, ЖЕЛ на 0,9–1,4 л.

Хотя с возрастом рост тренированности, функциональные возможности женского организма значительно расширяются и по некоторым показателям приближаются к таковым у мужчин, все же спортсменки не достигают свойственных последним адаптационных возможностей и проявления спортивных результатов.

Результаты исследований отражают закономерности роста и развития организма спортсменов в условиях тренировки и характеризуются положительной динамикой с более высокими показателями морфофункционального совершенствования у спортсменов по сравнению со спортсменками.

Литература:

- 1. Платонов, В.Н. Система подготовки спортсменов в олимпийском спорте. Киев: Олимпийская литература, 2004. 152 с.
- 2. Нормативные таблицы оценки физического развития различных возрастных групп населения Беларуси./ под ред. Л.Н. Тегако. Минск, 1998. 37с.

- 3. Верхошанский, Ю.В. Основы специальной физической подготовки спортсменов. М.: ФиС, 1988. 43 с.
- 4. Давыдов, В.Ю. Телосложение спортсменов в академической гребле и гребле на байдарках и каноэ. М.: Физкультура, образование, наука, 1997. 362 с.
- 5. Дембо, А.Г. Врачебный контроль в спорте. М.: Медицина, 1988. 188 с.
- 6. Иссурин, В.Б. Биомеханика техники гребли на байдарках и каноэ. –М.: ФиС, 1986. 77 с.
- 7. Силаев, А.П., Дольник Ю.А. Сравнительная характеристика модельных показателей гребцов на байдарках и каноэ // ТиПФК. 1979. № 4. С. 9.
- 8. Правов, И.В. Возрастные изменения двигательной деятельности. Л.: Наука, 1975.-408 с.

МОРФОМЕТРИЧЕСКАЯ ХАРАКТЕРИСТИКА СРЕДИННОГО НЕРВА Русецкая Е.Э., Шавель Ж.А.

УО «Гродненский государственный медицинский университет»

Нервная система занимает главенствующее положение в организме, являясь аппаратом, регулирующим взаимоотношения между организмом и внешней средой, осуществляя согласованность функций всех органов и адаптацию к условиям существования. Существует много работ, посвященных изучению периферической нервной системы. Так, в настоящее время известны закономерности развития сплетений. Установлено несколько типов формирования плечевого сплетения у представителей разных рас, показана вариабельность источников возникновения сплетения, степень участия вентральных ветвей в плечевом сплетении и его формы.

Нервы имеют определенную толщину в зависимости от величины обслуживаемой области. Количество пучков срединного нерва может колебаться от 2—4 до 18—31. У одного субъекта разница между правым и левым срединным нервом может варьировать от 0 до 13. Количество пучков нервных волокон слабо связано с калибром нерва. Общее количество нервных волокон в срединном нерве с возрастом значительно изменяется.

Изучены вопросы асимметрии в распределении нервов мышц конечностей, что используется для толкования ряда клинических проявлений при повреждении или заболеваниях нервно-мышечного аппарата.

Однако в доступной нам литературе мы не нашли информации о количественной характеристике срединного нерва, а изучение анатомической изменчивости остается актуальной проблемой современной морфологии.

Целью нашего исследования является изучение количественных показателей срединного нерва.

Материал исследования -13 трупов (8 мужских и 5 женских) в возрасте 60-70 лет.