- 4. Коршунов В. А. Эпидемиологические закономерности распространения наркопотребления и наркозависимости и направления по оптимизации мер профилактики: дис. канд. Первого Московского государственного медицинского университета им. И. М. Сеченова, Москва, 2017.
- 5. Центральная база статистических данных [Электронный ресурс] Режим доступа: URL:http://www.gks.ru (дата обращения 7.04.20)

ОСОБЕННОСТИ ЭФФЕКТА ОЗОНА В УСЛОВИЯХ ДЕЗОКСИГЕНАЦИИ

Билецкая Е. С., Зинчук В. В., Рыбаков Р. В., Трусова И. С., Богданович Е. Р.

Гродненский государственный медицинский университет, г. Гродно, Республика Беларусь

Резюме. В статье представлен анализ показателей кислородтранспортной функции и кислотно-основного состояния крови при действии озона в условиях дезоксигенации и коррекции системы газотрансмиттеров.

Ключевые слова: озон, нитроглицерин, газотрансмиттер.

PECULIARITIES OF THE OZONE EFFECT UNDER THE CONDITIONS OF DEOXYGENATION

Biletskaya E. S., Zinchuk V. V., Rybakov R. V., Trusova I. S., Bogdanovich E. R.

Grodno State Medical University, Grodno, Belarus

Summary. The article presents an analysis of the oxygen transport function and the acid-base state of the blood under the action of ozone in the conditions of deoxygenation and correction of the gasous transmitter system.

Key words: ozone, nitroglycerin, gaseous transmitter.

Озонотерапия является одним из перспективных современных методов неспецифического воздействия на организм. Литературные данные свидетельствуют, что минорные дозы данного газа стимулируют адаптационные и защитно-компенсаторные системы, обусловливая широкий эффектов [1].Уникальные свойства спектр биологических озона обусловливают перспективность внедрения методов озонотерапии с целью эффективности лечебных и профилактических мероприятий практически во всех традиционных областях медицины. В первую очередь это проявляется в нормализации функционирования антиоксидантной системы, стимуляции газотранспортной функции крови и др., приводящие в целом к положительному системному результату [2]. Озон обеспечивает усиленную отдачу кислорода недостаточно кровоснабжаемым тканям, что подтверждено анализом газового состава крови: напряжение кислорода в венозной крови после курса озонотерапии снижается и усиливается метаболизм в тканях, что нивелирует отрицательные эффекты гипоксемии [3]. Данный газ также активирует индуцибельную синтазу оксида азота, что приводит к увеличению концентрации последнего. Монооксид азота через изменение различных механизмов формирования функционального статуса эритроцитов, обеспечивает адаптацию организма к гипоксии [4]. В связи с этим особый интерес вызывает изучение эффектов озона в условиях дезоксигенации и коррекции системы газотрансмиттеров (монооксид азота, сероводород).

Целью нашей работы было определение особенностей эффекта озона на показатели кислородтранспортной функции, кислотно-основного состояния крови в условиях дезоксигенации и коррекции системы газотрансмиттеров.

Для эксперимента использовалась смешанная венозная кровь, взятая из правого предсердия у белых крыс-самцов массой 250-300 г, предварительно содержавшихся в стандартных условиях вивария. Забор проводили под адекватным наркозом (50 мг/кг тиопентала натрия интраперитонеально) в объеме 8 мл в подготовленный шприц с гепарином из расчета 50 ЕД на 1 мл.

Образцы крови (n=10) были разделены на 6 аликвот по 3 мл. В группах 2, 4, 5, 6 осуществляли дезоксигенацию крови в термостатируемом сатураторе газовой смесью (5,5% CO₂; 94,5% N₂) на протяжении 30 минут. К аликвотам добавляли озонированный изотонический раствор хлорида натрия в объёме 1 мл (в контроль и 2-ю без озонирования) и 0,1 мл растворов, содержащих газотрансмиттеры (в 5-ю – нитроглицерин в конечной концентрации 0,2 ммоль (SchwarzPharma AG), 6-ю – гидросульфид натрия в конечной концентрации 0,38 ммоль (Sigma-Aldrich)), в остальные группы – изотонический раствор хлорида натрия, после чего пробы перемешивались. Время инкубации составляло 60 мин. Изотонический раствор хлорида натрия барбатировался озоно-кислородной смесью, которая создавалась озонотерапевтической установкой УОТА-60-01-Медозон (Россия), в которой контролировалась концентрация озона.

После добавления озона на газоанализаторе Stat Profile pHOx plus L (США) при 37°C крови определяли следующие показатели кислородтранспортной функции: парциальное давление кислорода (pO_2) , степень оксигенации (SO₂) и кислотно-основного состояния: парциальное углекислого стандартный бикарбонат газа (pCO_2) , (SBC), реальный/стандартный недостаток (избыток) буферных оснований (ABE/SBE), гидрокарбонат (HCO_3^-) , концентрация водородных ионов углекислота плазмы крови (TCO₂). Сродство гемоглобина оценивали спектрофотометрическим методом по показателю $p50_{pean}$ (pO_2 крови при 50% насыщении ее кислородом). По формулам Severinghaus рассчитывали значение $p50_{\text{станд}}$.

Все показатели проверяли на соответствие признака закону нормального распределения с использованием критерия Шапиро-Уилка. С учетом этого были использованы методы непараметрической статистики с применением программы "Statistica 10.0". Уровень статистической значимости принимали за p < 0.05.

Установлено, что система газотрансмиттеров участвует в эффекте озона на кислородтранспортную функцию крови в условиях дезоксигенации. Дезоксигенация приводит к снижению pO_2 и SO_2 в сравнении с контролем. Показатель сродства гемоглобина к кислороду р50_{реал} также уменьшается. Схожая динамика изменений отмечается и по р $50_{\text{станд}}$. Также наблюдается сдвиг реакции крови в кислую сторону, что подтверждается снижением значения рН и ростом концентрации pCO₂, SBC, ABE/SBE, HCO₃, TCO₂. Добавление озона в дезоксигенированную кровь приводит к росту pO_2 , SO_2 , pSO_{pean} и $pSO_{craнд}$, однако в сравнении с 3-ей группой (озонирование без дезоксигенации) отмечается их снижение. Введение нитроглицерина усиливает эффект данного газа на кислородтранспортную функцию на параметры кислотно-основного И состояния в заданных условиях. При добавлении гидросульфида натрия наблюдается снижение pO₂ и SO₂ в сравнении с 3-ей группой. Взаимодействие доноров монооксида азота и сероводорода может иметь значение для модификации сродства гемоглобина к кислороду через образование различных дериватов гемоглобина.

Таким образом, результаты выполненного исследования демонстрируют, что озон в условиях дезоксигенации и коррекции системы газотрансмиттеров способен активно участвовать в процессах формирования кислородсвязывающих свойств крови. Нитроглицерин, как непосредственный донор монооксида азота и гидросульфид натрия усиливают влияние озона на показатели сродства гемоглобина к кислороду. Выявленный нами эффект реализуется вероятно, как непосредственно через вклад в функционирование систем цистеин/цистин и L-аргинин-NO, так и через модификацию функциональных свойств гемоглобина.

Литература

- 1. Озон и озонирование: Монография / И. С. Чекман [и др.] / X. : «Цифрова друкарня №1», 2013. 144 с.
- 2. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility / N. L. Smith [et al.] // Medical Gas Research. − 2017. − Vol. 7, № 3. − P. 212.
- 3. Гулиева, М. Г. Озонотерапия (обзор литературы) / М. Г. Гулиева // Офтальмология. 2010. № 2. c.102-109.
- 4. Nitric oxide in red blood cell adaptation to hypoxia / Y. Zhao[et al.] // Acta Biochimica et Biophysica Sinica. 2018. Vol. 50, № 7. P. 621–634.