ИСПОЛЬЗОВАНИЕ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ В ЛЕЧЕНИИ ОСТРОГО ГНОЙНО-НЕКРОТИЧЕСКОГО ПАРАПАНКРЕАТИТА В ЭКСПЕРИМЕНТЕ

Ушкевич А.Л.¹, Жандаров К.Н.², Прокопчик Н.И.¹
УО «Гродненский государственный медицинский университет»¹, УЗ «Гродненская областная клиническая больница», Гродно, Республика Беларусь

Актуальность. Согласно общемировой статистике, в последние годы происходит неуклонный рост заболеваемости острым панкреатитом. Деструктивные формы острого панкреатита, развивающиеся у 20–35% пациентов, обусловливают развитие ранних токсических и поздних септических осложнений, даже при использовании современного мощного арсенала фармакологических средств. На этом фоне крайне высокой остается летальность — от 15 до 40% при «стерильных» формах и до 80% при гнойных осложнениях панкреатита. Всё это ведёт к неуклонному поиску новых средств и методов в лечении острого деструктивного панкреатита, парапанкреатита, способствующих скорейшей ликвидации воспалительных процессов в поджелудочной железе и парапанкреатической клетчатке.

В последнее время значительный интерес и перспективы в лечении гнойных ран представляет использование метода фотодинамической терапии (ФДТ). Принцип ФДТ состоит в том, что при поглощении света определенной длины волны, соответствующей пику поглощения фотосенсибилизатора, молекула фотоизбирательно сенсибилизатора, захваченная бактериальной клеткой, переходит из основного состояния в короткоживущее синглентное возбужденное состояние и передает энергию третьему компоненту - кислороду в составе гемоглобина эритроцитов. Затем происходит либо обратный переход в основное состояние, сопровождающийся излучением кванта света – флюоресценцией, либо образуется триплетное возбужденное состояние, и запускаются фотохимические реакции, лежащие в основе фотодинамического воздействия. В микробных клетках начинается фотохимическая реакция с образованием синглетного кислорода и кислородных свободных радикалов, оказывающих токсическое воздействие на субстрат (компоненты бактериальной клетки), окисляя его.

Целью исследования являлась разработка способа лечения острого деструктивного парапанкреатита в эксперименте с применением фотодинамической терапии, на основе определения дозы фотосенсибилизатора для лечения деструктивных процессов в забрюшинной клетчатке.

Материалы и методы. В качестве лабораторных животных были использованы 40 кроликов, массой около 3,1±0,2 кг обоих полов. Их питание осуществлялось по обычной диете в условиях вивария. Кроликам был обеспечен свободный доступ к пище и воде, их содержали в стандартных условиях вивария с естественной 12часовой сменой света и темноты. Работу проводили с соблюдением этических норм обращения с животными, а также требованиями мирового сообщества правил, предусмотренных Европейской комиссией по надзору за проведением лабораторных и других опытов, с участием экспериментальных животных разных видов. Животных вводили в наркоз, взвешивали, фиксировали к операционному столу и выполняли операции в стерильных условиях. Выведение животных из эксперимента осуществлялось введением летальных доз тиопентала натрия. В асептических условиях производились лапаротомия, перемещение части поджелудочной железы в клетчатку забрюшинного пространства, травматизация её паренхимы, введение в паренхиму железы микробной взвеси с последующим ушиванием париетальной брюшины над травмированной частью железы. Рана послойно ушивалась. Спустя сутки проводили повторную лапаротомию. В брюшной полости находили признаки панкреатита, парапанкреатита, подтверждаемые макроскопическими, гистологическими и лабораторными исследованиями. В очаг деструкции в забрюшинной клетчатке вводили шприцом фотолон. Через 1 час производили низкоинтенсивное лазерное облучение забрюшинной клетчатки в месте развития воспаления в течение 10 минут. Использовали при этом аппарат лазерный Родник-1. После облучения рану послойно ушивали. Кролика помещали в отдельную клетку, ежедневно производился забор общего и биохимического анализов крови, велось наблюдение за животным.

Результаты и обсуждение. При изучении результатов лече-

ния острого парапанкреатита у лабораторных животных с применением фотодинамической терапии сравнение производили с контрольной группой, не получавшей лечения. Отмечены снижение лейкоцитоза, уменьшение палочкоядерных нейтрофилов в общем анализе крови после проведения ФДТ. Увеличение продолжительности жизни животных при использовании ФДТ. Изменения при аутопсии после использования ФДТ носят характер ограничения воспалительного процесса, или его практически полное затухание.

Заключение. Применение методов фотодинамической терапии с использованием низкоинтенсивного лазерного излучения при деструктивном парапанкреатите оказывает положительное действие на местные воспалительные процессы в забрюшинной клетчатке, направленные на уменьшение и ограничение воспаления.

ПРОГНОСТИЧЕСКИЕ ФАКТОРЫ ЛЕТАЛЬНОСТИ ПРИ РАЗРЫВАХ АНЕВРИЗМ БРЮШНОЙ АОРТЫ

Хрыщанович В.Я.¹, Третьяк С.И.¹, Романович А.В.², Климчук И.П.², Авдиевич А.Д.², Шагисултанов Э.Р.², Герасимович Г.В.¹

УО «Белорусский государственный медицинский университет»¹, УЗ «4-я городская клиническая больница»², Минск, Республика Беларусь

Актуальность. Разрыв аневризм брюшной аорты (АБА) является наиболее частым и серьезным осложнением, ежегодная частота которого составляет 20–40 случаев на 100 000 населения. Послеоперационная летальность после хирургических вмешательств по поводу разрыва АБА колеблется от 15% до 65%, составляя в среднем 50%, и существенно отличается от таковой при плановых операциях – 2,9% [1, 2]. Целью настоящего исследования был анализ прогностических факторов летальности у пациентов с разрывом АБА.

Материалы и методы. Проведен ретроспективный анализ