квадрата, для которого вычисляется средняя яркость, b — минимальная разница между средней яркостью и яркостью данного пикселя, а также, «должна яркость данного пикселя быть больше или меньше средней». Вместо серого изображения может использоваться и цветное, а вместо яркости может использоваться любой канал любой цветовой модели (Red, Green, Blue, Hue, Saturation, Value и другие) или их сумма (среднее). При анализе гистологических препаратов меланом программное обеспечение продемонстрировало компетентность в работе с препаратами переменной яркости.

Выводы. Разработанный нами алгоритм с применением бинаризации позволяет выполнять морфометрическую оценку цифровых микрофотографий гистологических препаратов с неравномерной яркостью, а интеграция его в компьютерную программу *mashcv* позволила использовать последнюю для анализа подобных изображений с сохранением всех доступных ранее функций программы.

ВЛИЯНИЕ КУРЕНИЯ И ПОВЫШЕННОГО АРТЕРИАЛЬНОГО ДАВЛЕНИЯ НА ПОКАЗАТЕЛИ ПРОБЫ СЕРКИНА У СТУДЕНТОВ

Хилюк Т.В.

Гродненский государственный медицинский университет, Беларусь Кафедра патологической физиологии им. Д.А.Маслакова Научный руководитель — д.м.н., проф. Максимович Н.Е.

Факторами, способными оказывать неблагоприятное влияние на устойчивость организма к гипоксии, являются курение, а также повышение артериального давления. Известно, что артериальная гипертензия «помолодела» и многие молодые люди отмечают у себя повышение артериального давления. В свою очередь, артериальная гипертензия — неблагоприятный фактор гемодинамический фактор и фактор риска инфаркта миокарда, инсультов и наиболее частая причина заболеваемости и смертности.

Цель исследования – изучение влияния курения и повышенного артериального давления на показатели пробы Серкина.

Материалы и методы. Исследования проведены у 86 студенток, в том числе – у 56 некурящих девушек со значениями АД_{сист.} не более 120 мм рт.ст. Изучалось влияние курения (n=18), а также влияние повышения систолического артериального давления до 130 мм.рт.ст. (n=11) и повышения АД_{сист.} до 140 мм рт.ст. (n=7). Изучалось влияние курения в сочетании с эпизодами повышения систолического артериального давления до 130 мм рт.ст. (n=6) и повышения АД_{сист.} до 140 мм рт.ст. (n=6).

У студентов определялась продолжительность задержки дыхания на вдохе (проба Штанге) или первая фаза пробы Серкина, продолжительность задержки дыхания непосредственно после 20 приседаний (вторая фаза) и продолжительность задержки дыхания на вдохе через 1 минуту отдыха (третья фаза пробы Серкина).

Результат. Курение способствовало уменьшению продолжительности задержки дыхания во всех фазах пробы Серкина.

Таблица – Показатели пробы Серкина (20 приседаний) у девушек с наличием эпизодов повышенного АД_{сист.} и курением

Группы	1-я фаза (проба	2-я фаза (сек.)	2-я фаза (% от 1-й	3-я фаза (сек.)	3-я фаза (% от 1-й
	ùтанге)	, ,	` фазы)	` ′	` фазы)
некурящие девушки N АД _{сист.}	53±17,6	23±9,2	41,8± 15,9	36±15,3	72,5±34,7
курящие девушки	50±7,3	16,5±4,3	33± 7,9	29,8±6,8	56,6±13,8

↑АДсист. до 130 мм	46,5±11,0	19±3,3	39,3 ±12,1	33,8±12,9	76,4±27,5
рт.ст.					
↑АДсист. до 130 мм	40,2±13,1*	13,3±4,2*	33,5±6,8*	27±9,9*	67,4± 6,7*
рт.ст. + курение					
↑АДсист. до 140 мм	43,8±8,8	15,1±2,4	34 ±5,5	26,9±6,7	59,7±20,6
рт.ст.					
↑АДсист. до 140 мм	37,3±5,1*	12,3±1,7**	32 ±2,7**	20,3±3,8*	54,5±7,8*
рт.ст. + курение					

Выводы. Курение способствует ухудшению показателей, характеризующих состояние дыхательной и сердечнососудистой систем, а его сочетание с повышением систолического артериального давления характеризуется более существенными снижением изучаемых показателей, что указывает на целесообразность элиминации курения, а также артериальной гипертензии, как фактора развития недостаточности кровообращения.

Литература:

1. Максимович Н.Е., Троян Э.И., Ходосовский М.Н., Лелевич А.В. Патологическая физиология: практикум для студентов лечебного факультета (в двух частях) / Н.Е. Максимович и [др.]. – Гродно: ГрГМУ, 2014. – Ч. 2. – 382 с.

ИНТОКСИКАЦИЯ УГАРНЫМ ГАЗОМ В ПРОМЫШЛЕННЫХ УСЛОВИЯХ

Хлистовский А. М., Астапчик И. В., Самович А. В.

Гродненский государственный медицинский университет, Беларусь Военная кафедра

Научный руководитель – к.м.н., доцент Ивашин М. В.

Актуальность. В Республике Беларусь сложилась серьезная токсикологическая ситуация в связи с высоким темпом и ритмом жизни. В структуре летальности от острых отравлений среди населения РБ отравления угарным газом занимают вторую позицию, что составляет 17,7-26,6 % от всех причин смерти.

Цель исследования: проанализировать и изучить влияние монооксида углерода на организм человека и взаимосвязь этих влияний с промышленными условиями.

Материалы и методы. Произведен анализ и изучение материалов (25 источников), содержащих информацию об интоксикации угарным газом в промышленных и бытовых условиях.

Результаты. Окись углерода входит в состав газов, выделяющихся в процессах выплавки и переработки черных и цветных металлов, выхлопных газов двигателей внутреннего сгорания, образующихся при взрывных работах и при взрывах некоторых природных газов. Монооксид углерода применяется для обработки мяса животных и рыбы, придает им ярко-красный цвет и вид свежести, не изменяя вкуса. Допустимая концентрация СО равна 200 мг/кг мяса.

Отравление окисью углерода возможно у лиц, имеющих профессиональный контакт с продуктами горения (рабочие промышленных предприятий, спасатели, пожарные, утилизаторы мусора, повара, строительные рабочие и др.).

Окись углерода является, в первую очередь, кровяным ядом и относится к группе веществ, вызывающих изменения пигмента крови гемоглобина. Токсическое действие монооксида углерода на организм основано на взаимодействии его с гемоглобином и образовании карбоксигемоглобина (НьСО), неспособного переносить кислород, развитии гемической (транспортной) гипоксии. Значительная часть окиси углерода (от 15 до 50%) взаимодействует кроме гемоглобина и с другими железосодержащими биологически активными системами организма (гемопротеинами): цитохромоксидазой — цитохромом а₃, цитохромом Р-450, цитохромом с, каталазой, пероксидазой, миоглобином и др. Диссоциация образующихся соединений очень медленная (от 48 до 72 часов), в результате блокируется тка-