ХАРАКТЕРИСТИКА Т-ЛИМОЦИТОВ С γδТ-КЛЕТОЧНЫМ РЕЦЕПТОРОМ У ПАЦИЕНТОВ С ОПУХОЛЯМИ НОСА И ОКОЛОНОСОВЫХ ПАЗУХ

Калачёва А. О.¹, Адамович А. Ю.², Морозова Н. А.³, Колядич Ж. В.³, Нижегородова Д. Б.^{1,2}

¹Кафедра иммунологии и экологической эпидемиологии УО «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

г. Минск, Республика Беларусь

²Научно-исследовательская лаборатория ГУО «Белорусская медицинская академия последипломного образования»

г. Минск, Республика Беларусь

³Лаборатория онкопатологии центральной нервной системы с группой онкопатологии головы и шеи

ГУ «Республиканский научно-практический центр онкологии и медицинской радиологии им. Н.Н. Александрова», а/г Лесной Минский район, Республика Беларусь

Актуальность. $\gamma \delta T$ -лимфоциты представляют собой малоизученную гетерогенную популяцию T-лимфоцитов, доминирующую в слизистых оболочках и сочетающую в себе свойства как клеток врожденного, так и приобретенного иммунитета. Отсутствие процессинга и МНС-рестрикции обуславливает способность $\gamma \delta T$ -клеток идентифицировать широкий спектр антигенов, природа которых, как и механизм распознавания, до конца не установлены. Механизмы вовлечения $\gamma \delta T$ -лимфоцитов в формирование специфического иммунного ответа представляют широкий интерес для исследователей и позволяют рассматривать эти клетки в качестве перспективного направления патогенетической терапии при различных иммунопатологических состояниях.

Циркулирующие $\gamma \delta T$ -лимфоциты характеризуются экспрессией CD3 маркера и отсутствием CD4 и CD8 костимулирующих молекул. Резидентные $\gamma \delta T$ -клетки имеют аналогичный фенотип (CD3⁺CD4⁻CD8⁻), однако некоторые $\gamma \delta T$ -лимфоциты могут также экспрессировать CD8 или CD8 α . $\gamma \delta T$ -лимфоциты периферической крови имеют фенотип активированных клеток или клеток-памяти и в большей своей массе являются аутореактивными,

в то время как резидентные $\gamma \delta T$ -лимфоциты, главным образом, наивные клетки. После встречи с антигеном $\gamma \delta T$ -клетки подвергаются фенотипическим изменениям, характерным для $CD8^+\alpha\beta T$ -клеток: они приобретают CD45RO (маркер T-клеток памяти) подобно ранним $\alpha\beta T$ -клеткам центральной памяти, а также повторно начинают экспрессировать CD45RA с продолжающейся их активацией, что характерно для поздних $CD8+\alpha\beta T$ -клеток (клетки эффекторной памяти).

Среди основных биологических эффектов Т-клеток с $\gamma \delta T$ -кле-точным рецептором выделяют: цитотоксичность, иммунорегуляцию, презентацию антигенов и репарацию поврежденных тканей и органов.

Многочисленные исследования свидетельствуют о реактивности *in vivo* как циркулирующих (в некоторых случаях они увеличиваются до 42% от мононуклеаров периферической крови), так и резидентных $\gamma \delta T$ -лимфоцитов против широкого ряда опухолевых клеточных линий (гемопоэтические опухоли, солидные опухоли, В-клеточные лимфомы, плазмоцитомы и т. д.). По аналогии с участием в противомикробном иммунитете $\gamma \delta T$ -лимфоциты быстро вовлекаются и локально активируются в местах воспаления в процессе онкогенеза, а исследование механизмов идентификации опухолевых клеток предполагает наличие нескольких возможных мишеней для $\gamma \delta T$ -клеток.

Таким образом, определение количественного состава и функционального потенциала $\gamma \delta T$ -клеток должно быть неотъемлемой частью анализа иммунного статуса пациентов в практическом здравоохранении для разработки современных подходов к терапии социально значимых заболеваний человека и определению прогноза течения заболевания.

Цель. Установить фенотипические и функциональные особенности γδТ-лимфоцитов у пациентов с иммунопатологическими процессами, ассоциированными с опухолями носа и околоносовых пазух или инвертированной папилломой.

Материалы и методы исследования. Материалом для исследования послужила цельная периферическая венозная кровь пациентов со следующими диагнозами: группа 1 — пациенты с опухолями носа и околоносовых пазух (n=6), из которых 3 мужчин и 3 женщины, средний возраст — 57,0 [47,7÷62,2] лет;

группа 2 — пациенты с инвертированной папилломой (n=6), из них 3 мужчин и 3 женщины, средний возраст — 41,0 [30,0÷61,0] год (группа сравнения). Контрольную группу составили здоровые доноры (n=17) аналогичного возраста и пола (группа 3).

Метод проточной цитофлуориметрии. Периферическую кровь отбирали в стерильные пробирки с гепарином. Из периферической крови выделяли мононуклеары периферической крови (МПК) центрифугированием на градиенте плотности Histopaque 1077 в течение 30 мин при 1500 об/мин при 4°C с последующим 2-кратным отмыванием клеточной суспензии в физиологическом растворе в течение 10 мин при 1500 об/мин при 4°C. Для определения экспрессии основных поверхностных маркёров убТ-лимфоцитов МПК исследуемых групп окрашивали моноклональ-CD3-FITC, CD45RO-ECD, γδTCR-PC7 антителами (BeckmanCoulter, США) согласно инструкции производителя. Окрашенные пробы инкубировали в течение 15 минут в темноте при комнатной температуре. Регистрацию результатов выполняли на проточном цитометре Cytoflex (BeckmnCoulter, США) на 1000 γδТ-лимфоцитов.

Культуральный метод. МПК культивировали в полной питательной среде на основе RPMI-1640 (Invitrogen, Великобритания), 10% эмбриональной телячьей сыворотки (Gibco, Германия), 2 мМ L-глютамина (Invitrogen, Великобритания), 1% антибиотика антимикотика (Sigma, Германия), 100 МЕ/мл интерлейкина-2 в присутствие или отсутствие изопентенил пирофосфата (IPP, Fluka, Германия). Спонтанную и IPP-индуцированную активацию γδТ-лимфоцитов оценивали через 6 дней культивирования МПК при помощи проточной цитофлуориметрии и моноклональных антител CD3-FITC, CD45RO-ECD, γδTCR-PC7. Индекс стимуляции (ИС) рассчитывали как отношение количества γδТ-лимфоцитов в культуре МПК, стимулированной IPP, к количеству γδТ-лимфоцитов в не стимулированной культуре МПК.

Статистическая обработка данных проводилась с использованием стандартного пакета Sttistica 8.0 (StatSoft Inc., США). Для описательной статистики исследуемых групп использовали показатели медианы, нижнего и верхнего процентилей (25-й и 75-й процентиль). Определение достоверных различий между сравниваемыми группами осуществляли непараметрическими

критерями: U-критерий Манна-Уитни и критерий Вилкоксона. Различия считались статистически значимыми при p<0,05.

Результаты и их обсуждение. Количественная и функциональная характеристика $\gamma \delta T$ -лимфоцитов у пациентов с опухолями носа и околоносовых пазух.

Установлено, что у пациентов с опухолями носа и околоносовых пазух наблюдалась тенденция к увеличению количества $\gamma \delta T$ -лимфоцитов в периферической крови (5,15 (2,72÷5,73)%) по сравнению с аналогичными показателями в группе сравнения (3,09 (1,86÷4,90)%, p=0,07) и контрольной группе (3,54 (2,07÷5,70)%, p=0,09). При этом процентное содержание субпопуляции $\gamma \delta T$ -лимфоцитов с фенотипом клеток-памяти как у пациентов с опухолями носа и околоносовых пазух, так и у пациентов с инвертированной папилломой характеризовалось тенденцией к снижению относительно контрольной группы: группа 1 — 12,39 (3,54÷31,55)%; группа 2 — 4,97 (0,76÷33,09)%; группа 3 — 21,50 (4,10÷28,40)%; p=0,08.

После 6-дневного культивирования МПК у пациентов с опухолями носа и околоносовых пазух выявлено статистически значимое увеличение спонтанно активированных $\gamma\delta T$ -лимфоцитов (8,40 (5,35÷10,10)%) как относительно группы сравнения (2,55 (1,60÷3,50)%, p<0,01), так и контрольной группы (4,40 (3,30÷6,40)%, p<0,05) наряду со статистически значимым снижением экспрессии маркера клеточной памяти CD45RO на $\gamma\delta T$ -лимфоцитах: группа 1 – 5,19 (3,23÷16,69)%; группа 2 – 25,55 (11,71÷37,05)%; группа 3 – 9,71 (1,52÷32,90)%; p<0,01.

В то же время оценка функционального потенциала $\gamma \delta T$ -лимфоцитов в условиях стимуляции IPP показала отсутствие статистически значимых различий между исследуемыми группами в способности активации общей популяции $\gamma \delta T$ -клеток (группа 1 — ИС=1,8; группа 2 — ИС=2,1; группа 3 — ИС=2,9), но выявила статистически значимое увеличение уровня активации субпопуляции $\gamma \delta T$ -клеток памяти у пациентов группы 1 (ИС=7,7) по сравнению с группой 2 (ИС=1,4, p<0,01) и контрольной группой (ИС=1,9, p<0,01).

Согласно литературным данным γδТ-лимфоциты, с одной стороны, обладают сильной противоопухолевой активностью и способны ингибировать пролиферацию раковых клеток,

ангиогенез, лимфангиогенез и индуцировать апоптоз раковых клеток, а с другой стороны могут участвовать в стимуляции онкогенеза, нарушая функцию разных эффекторных клеток.

В исследованиях in vitro активированные непептидными антигенами человеческие үбТ-клетки показали широкую цитотоксичность к опухолевым клеткам, выделенным из карцином мочевого пузыря, молочной железы, поджелудочной железы, простаты, почки, толстой кишки, лимфом, меланом и миелом, назофарингеальной карциномы, нейробластомы, мелкоклеточного рака легких. По аналогии с участием в противомикробном иммунитете γδТ Т-лимфоциты быстро вовлекаются и локально активируются в местах воспаления в процессе онкогенеза. Исследование механизмов идентификации опухолевых клеток предполагает наличие нескольких возможных мишеней для убТТ-клеток. Так, метаболиты опухолевых клеток, являющиеся по своей природе фосфоантигенами, могут быть непосредственно транслоцированы и презентированы на клеточной поверхности с помощью пероксисомальных или митохондриальных энзимов, таких как AS, или с помощью до сих пор неиндентифицированных презентирующих молекул. Некоторые исследования показали экспрессию F1-ATРазы на опухолевых клетках, которую также могут распознавать убТ-лимфоцитами при участии аполипопротеина А-1. Более вероятно, что человеческие γδТ-лимфоциты определяют и впоследствие лизируют различные опухолевые линии благодаря NKRs, главным образом NKG2D, которые распознают соответствующие лиганды (MICA и MICB и ULBP1-4) на трансформированных клетках.

Эффекторные функции активированных γδТ-лимфоцитов во многих аспектах схожи с таковыми αβТ-клеток: γδТ-лимфоциты продуцируют большое количество воспалительных цитокинов (ΤΝFα и IFNγ) и проявляют цитотоксичность в отношении широкого спектра клеток-мишеней. Активированные γδТ-лимфоциты синтезируют перфорин, гранзимы, гранулизин, серглицин, катепсин с и серпины. Помимо основных гранзимов, А и В, γδТ-лимфоциты также экспрессируют высокий уровень гранзима с в сочетании с низким уровнем гранзимов D, E, F, G. Наряду

с перфорин-гранзимовым путем лизис клеток-мишеней $\gamma \delta T$ -лимфоцитами может опосредоваться за счет экспрессии Fas/FasL, TRAIL и NKG2D. Широкий спектр цитотоксической активности и способность этой популяции активироваться TCR-независимым способом ставит $\gamma \delta T$ -лимфоциты на уровень выше среди киллерных клеток в отношении специфических мишеней.

Однако определенные субпопуляции γδТ-клеток способны непосредственно стимулировать прогрессирование рака. Установлено, что IL-17 $^+\gamma\delta$ Т-лимфоциты поддерживают прогрессирование рака, способствуя ангиогенезу при раке желчного пузыря, раке яичников и др., являясь основным источником IL-17, который играет выраженную иммуносупрессивную роль и индуцирует выработку сосудистого эндотелиального фактора роста, а также других факторов, связанных с ангиогенезом. Также продемонстрировано, что γδ Т-клетки могут поляризоваться в направлении регуляторных $FOXP3^+\gamma\delta T$ -клеток после стимуляции TGF- β и IL-15 *in vitro*, которые имеют сходную функцию с клетками регуляторными αβТ-клетками и подавляют пролиферацию эффекторных Т-лимфоцитов. Кроме того, резидентные $V\delta 1^+\gamma\delta T$ -клетки участвуют в прогрессировании рака посредством синтеза противовоспалительного цитокина TGF-β, который может индуцировать эпителиально-мезенхимальную трансформацию и, в конечном итоге, приводит к метастазированию и инвазивности рака.

Выводы. У пациентов с опухолями носа и околоносовых пазух наблюдается тенденция к увеличению количества γδТ-лимфоцитов в периферической крови, повышение их спонтанной активации (р<0,01) наряду со снижением экспрессии CD45RO – маркера клеток-памяти относительно группы сравнения и контрольной группы, но при этом способность к стимуляции CD45RO+γδТ-лимфоцитов в ответ на IPP статистически значимо превышает аналогичные показатели в исследуемых группах 2 и 3, что свидетельствует об активном вовлечении популяции γδТ-лимфоцитов и ее субпопуляции с фенотипом клеток-памяти в патогенез опухолей носа и околоносовых пазух и требует дальнейшего детального изучения функционального статуса и миграционной способности данной субпопуляции.

Литература

- 1. Brandes, M. Professionl antigen-presentation function by human T cells / M. Brandes, K. Willimann, B. Moser // Science. 2005. Vol. 309. P. 264—268.
- 2. Chien, Y. U. Antigen recognition by T cells / Y. U. Chien, Y. Konigshofer // Immunologicl Reviews. 2007. Vol. 15. P. 46–58.
- 3. Кудрявцев, И. В. Т–клетки памяти: основные популяции и стадии дифференцировки / И. В. Кудрявцев // Рос. иммунол. журн. 2014. С. 947–964.

ЭФФЕКТОРЫ ЭНДОКРИННОЙ СИСТЕМЫ В ТОВАРАХ ДЛЯ ДЕТЕЙ

Квиткевич Л. А., Парфенчик А. А., Заяц М. А.

Кафедра радиационной медицины и экологии УО «Белорусский государственный медицинский университет» г. Минск, Республика Беларусь

Актуальность. Эндокринные нарушения, которые могут быть вызваны широко используемыми химическими веществами, имеют высокую социальную значимость. Это обусловлено как влиянием на здоровье отдельного человека, так и на демографическую ситуацию в целом [1, 5].

Цель. Идентификация эффекторов эндокринной системы (ЭЭС) в составе детской посуды, игрушек и косметических средств ухода для детей до трёх лет; изучение осведомлённости и отношение студенток БГМУ к наличию ЭЭС в детской посуде, игрушках и косметических средствах ухода для детей до трех лет.

Действие эстрогенов опосредовано внутриклеточными рецепторами. Существуют два типа эстрогеновых рецепторов (ЭР), а и β, кодируемые разными генами – ESR1 и ESR2. Первыми были открыты а-рецепторы. Больше всего их содержится в женских половых органах, особенно в матке, во влагалище и в яичниках, а также в молочных железах, гипоталамусе, эндотелии и гладкомышечных клетках сосудов. Эстрогеновые β-рецепторы распределены в тканях несколько по-другому: больше всего их