кторов регуляции системы микроциркуляции. В то же время применение сухой озоно-кислородной смеси и масляных озонидов вызывает преимущественную активацию симпатических влияний на микроциркуляцию.

ЭФФЕКТЫ ПРИМЕНЕНИЯ СЕЛЕНОПИРАНА ПРИ МОДЕЛИРОВАНИИ ОКИСЛИТЕЛЬНОГО СТРЕССА

Петушок Н.Э.¹, Пеховская Т.А., Катковская И.Н., Шевалье А.А.²

 $^1\Gamma$ родненский государственный медицинский университет; 2 Институт биохимии биологически активных соединений НАН Беларуси, Γ родно

Метаболическим следствием недостатка селена является ослабление антиоксидантной защиты организма, и прежде всего ферментных систем глутатионпероксидаз и тиоредуктаз. Изучение механизмов возникновения некоторых заболеваний ЖКТ дало ряд бесспорных доказательств участия активных форм кислорода в их патогенезе. В частности, убедительно доказано, что система глутатионпероксидаза/восстановленный глутатион является важным фактором модуляции симптомов при хроническом воспалении кишечника. Целью поведенных нами исследований была оценка протективной активности 2-фенилоктагидроселеноксантена («Селенопирана»).

Исследования проведены на крысах линии Wistar CRL: (WI)WU BR. Животные в течение 42 дней получали селенопиран (10 мкг Se/кг). За 24 ч до декапитации группа крыс получала подкожные инъекции бактериального липополисахарида (ЛПС), инициирующего развитие эндогенной интоксикации и окислительного стресса. В плазме крови определяли содержание тиобарбитурат-реагирующих продуктов (ТБК-РП), в эритроцитах — уровень восстановленного глутатиона (ГSH), активность глутатионпероксидаз (субстраты H_2O_2 и t-бутилгидропероксид, t-ВООН). В гомогенатах слизистой отделов кишечника измеря-

ли активность глутатионпероксидаз и глутатионредуктазы, содержание ГSH и ТБК-РП.

Наличие окислительного стресса у животных, получивших инъекции ЛПС, подтверждается повышенным содержанием ТБК-РП в плазме крови. Других достоверных изменений в эритроцитах в этой ситуации не отмечено (табл. 1).

Таблица 1 – Активность глутатиопероксидаз, уровень ГЅН и ТБК-РП в крови крыс с эндогенной интоксикацией, вызванной ЛПС, на фоне потребления селенопирана

Показатель	Контроль	ЛПС	Селено-	Селено-
	•		пиран	пиран+ЛПС
$\Gamma\Pi O \left(H_2 O_2 \right)^1$	139.1±13.6	129.7±10.1	131.7±9.8	126.6±13.0
Γ ΠΟ (t-BOOH) ²	437.4±13.1	404.0±16.9	571.9±13.8°	510.9±20.0 b
ΓSH^3	6.62±0.24	6.32±0.18	6.05±0.14 a	5.300.28 b
ТБК-РП ⁴	3.61±0.15	4.63±0.14 a	4.25±0.17 a	4.75±0.10

Примечания:

- 1 нмоль ГSH/мин/гНb, 2 мкмоль ГSH/мин/г Hb, 3 мкмоль/г Hb, 4 нмоль/мл плазмы;
- a достоверные изменения по отношению к группе «контроль», b по отношению к группе «ЛПС»

В слизистом эпителии 12-перстной кишки происходит уменьшение концентрации ГЅН (табл. 2) и ТБК-РП. В тонком кишечнике также снижается уровень ГЅН. В эпителии толстого кишечника после применения ЛПС изменений уровня ТБК-РП нами не наблюдалось.

Применение селенопирана в качестве добавки к рациону способствовало повышению активности ГПО (с t-BOOH) и концентрации ТБК-РП при сниженном уровне ГЅН в крови. В эпителии 12-перстной кишки уменьшалась интенсивность ПОЛ. В тонкой кишке отмечено увеличение концентрации ГЅН и активности ГПО (с t-BOOH), в толстом кишечнике животных данной группы выросла активность ГР.

При инициировании эндогенной интоксикации у животных, предварительно получивших селенопиран, не произошло снижения уровня ГЅН в 12-перстной кишке. Содержание ТБК-РП было выше, чем в группах «ЛПС» и «селенопиран». В тонком кишечнике повышена активность ГР и достаточно высоко содержание ГЅН. В толстом кишечнике значительно возрастает активность H_2O_2 -метаболизирующей ГПО.

Таблица 2 – Глутатионовая система и уровень ТБК-РП в кишечнике крыс с эндогенной интоксикацией на фоне потребления селенопирана

Показатель	Контроль	ЛПС	Селено- пиран	Селено- пиран+ЛПС		
12-перстная кишка						
$ΓΠΟ (t-BOOH)^2$	1.16±0.03	1.10±0.01	1.23±0.06	1.20±0.01 b		
ΓSH^5	15.23±0.86	8.48±0.39 a	19.88±2.14 a	15.81±1.83 b		
ТБК-РП ⁶	46.7±7.9	21.5±3.8 a	28.1±2.0 a	37.8±3.6 b		
тонкий кишечник						
$ΓΠΟ (t-BOOH)^2$	1.06±0.02	1.00 ± 0.01	1.13±0.01 a	1.08±0.01		
ΓP^3	69.6±1.2	60.6±2.8 a	71.3±7.7	81.4±85.5 ^b		
ΓSH^5	2.46±0.14	1.06±0.03 a	4.02±0.46 a	3.13±0.19 ^b		
толстый кишечник						
$\Gamma\Pi O (H_2 O_2)^1$	101.2±9.2	158.3±24.9 a	84.0±9.2	256.3±32.1 b		
ΓP^3	62.0±4.0	74.5±1.3 a	77.6±8.3 a	67.8±7.9		
ТБК-РП ⁶	111.0±5.9	112.5±6.6	95.7±4.0 a	107.5±6.5		

Примечания:

- 1- нмоль ГЅН/мин/ г белка, 2- мкмоль ГЅН/мин/ г белка, 3- нмоль НАБФН/мин/мг белка, 5- нмоль/мг белка, 6- нмоль/г ткани;
- a достоверные изменения по отношению к группе «контроль», b к группе «ЛПС»

Таким образом, можно констатировать, что применение селенопирана способствует адекватному функционированию глутатионовой системы в эпителии кишечника при окислительном стрессе, но не предотвращает интенсификации ПОЛ в эпителии 12-перстной кишки. Полученные данные могут служить основой для исследований, касающихся стабилизации системы глутатиона и антиоксиданстной системы в целом при различных патологических состояниях человека, вызванных окислительным стрессом и (или) недостатком селена в рационе.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант 505M-195).

ЛИТЕРАТУРА

- 1. Arteel G.E., Sies H. The biochemistry of selenium and the glutathione system // Environmental Toxicology and Pharmacology. 2001. Vol. 10. P153-158.
- 2. Кулинский В.И., Колесниченко Л.С. Система глутатиона. І. Синтез, транспорт, глутатионтрансферазы, глутатионпероксидазы // Биомедицинская химия. -2009.-T.55, вып 3.-C.255-277.