окружающей пациента внешней среды). Замена фактически «гипероксической» среды на нормоксическую устраняет необходимость соответствующей адаптационной реакции больного организма. Использование интегративной терапии дает возможность снизить адаптационное напряжение в организме пациента, приблизить его гомеостаз к состоянию нормы».

Таким образом, проводимое на таком кислородном фоне основное лечение, в том числе и противоопухолевое, может оказаться более эффективным, поскольку решает менее трудные адаптационные задачи больного организма.

ЛИТЕРАТУРА

- 1. Мосиенко В.С. Рак: пути в незнаемое, разочарование и надежды. Киев: Школьный мир, 2009. 352 с.
- 2. Гаркави Л.Х., Квакина Е.Б., Уколова М.А. Адаптационные реакции и резистентность организма. Ростов-на Дону: РГУ, 1990. 224 с.
- 3. Кавецкий Р.Е. Взаимодействие организма и опухоли. Киев: Наукова думка, 1977. 235 с.
- 4. Бурлака А.П., Сидирик Е.П. Радикальні форми кисню та оксиду азоту при пухлинному процесі. Київ: Наукова думка, 2006. 228 с.

РОЛЬ ОКИСЛИТЕЛЬНОГО СТРЕССА В ПАТОГЕНЕЗЕ ДИАБЕТИЧЕСКОЙ ПОЛИНЕЙРОПАТИИ С НЕЙРОПАТИЧЕСКИМ БОЛЕВЫМ СИНДРОМОМ

Нечипуренко Н.И., Пашковская И.Д., Василевская Л.А., Верес А.И.

Республиканский научно-практический центр неврологии и нейрохирургии, Минск

Введение. В настоящее время феномен «окислительного стресса» рассматривают как основную причину формирования поздних осложнений сахарного диабета, в том числе диабетической полинейропатии (ДПНП). В условиях хронической гипергликемии процессы аутоокисления глюкозы, активации перекисного окисления липидов (ПОЛ) и значительного накопления конечных продуктов гликирования белков приводят к избыточному образованию кислородных радикалов, обладающих повы-

шенной реакционной способностью и нарушающих деятельность клеточных структур, в первую очередь эндотелия [1].

Цель – изучить болевую чувствительность, вазомоторную функцию эндотелия, состояние про-, антиоксидантной системы и содержание нейромедиаторов в крови у пациентов с ДПНП и нейропатическим болевым синдромом (НБС) в условиях стандартной терапии.

Методы исследования. Обследовано 16 пациентов с ДПНП и НБС, средний возраст которых составил $55,3\pm15,5$ лет. Нормальные микроциркуляторные и биохимические показатели исследованы у 25 практически здоровых лиц со средним возрастом $40,9\pm10,5$ лет (p>0,05).

Для количественной оценки болевого синдрома использовали: визуально-аналоговую шкалу (ВАШ) и шкалу NSS (Neuropathy Symptom Score). Пациенты получали стандартную терапию при лекарственной коррекции гликемии: курс ежедневных внутривенных инфузий тиоктацида по 600 мг № 10, внутримышечных инъекций витаминов B_1 и B_6 по 1 мл 5% раствора № 10.

Реактивность сосудов микрогемоциркуляторного русла исследована методом высокочастотной ультразвуковой допплерографии с использованием прибора «Минимакс-Допплер-К» в условиях выполнения теста реактивной гиперемии с оценкой линейных и объемных скоростей кровотока.

Определяли содержание продуктов, реагирующих с тиобарбитуровой кислотой (ТБК-П), по методике, модифицированной В.А. Костюком. Активность супероксиддисмутазы (СОД) в крови изучали по реакции супероксидзависимого окисления кверцетина, активность каталазы в плазме крови исследовали методом образования комплекса с солями молибдена. Концентрации субстанции Р и норадреналина в плазме крови определяли методом твердофазного иммуноферментного анализа ELISA тестнаборами фирмы «DRG».

Использовали параметрические и непараметрические методы статистического анализа.

Результаты и их обсуждение. При неврологическом осмотре у пациентов выраженность болевого синдрома по шкалам NSS и ВАШ в 1-й день поступления достигала 8 (3-8) и 50 (35-

55) баллов, соответственно, а при выписке из стационара выраженность болевого синдрома снизилась до 4 (2-6), p=0.056 и 35 (25-40) баллов, p=0.008, соответственно.

На момент госпитализации у пациентов отмечали повышение концентрации ТБК-П до 3,2 (2,6-3,6) мкмоль/л по сравнению с нормой — 1,8 (1,6-2,2) мкмоль/л (p=0,002); тенденция к снижению активности СОД на 20% и каталазы — на 30% относительно нормального уровня, что указывает на развитие окислительного стресса при данной патологии. НБС при ДПНП сопровождается тенденцией к повышению уровня субстанции P у пациентов до 0,84 (0,6-1,36) нг/мл относительно нормы — 0,53 (0,47-0,72) нг/мл на фоне статистически значимого снижения концентрации норадреналина до 0,1 (0,07-0,24) у относительно здоровых лиц — 0,29 (0,16-0,35) нг/мл (p=0,038). Корреляционный анализ выявил прямую взаимосвязь между содержанием субстанции P и балльной оценкой по шкале NSS — r=0,44 (p=0,03), что подтверждает зависимость выраженности HEC от уровня основного нейротрансмиттера боли при ДПНП.

У этих пациентов наблюдали снижение сосудистой реактивности с развитием недостаточных по величине реакций. В 36% случаев зарегистрированы парадоксальные сдвиги в виде редукции кожного кровотока в период декомпрессии плечевой артерии, что свидетельствует о дисфункции эндотелия.

После лечения у пациентов на фоне достоверного снижения выраженности болевого синдрома по шкалам NSS и ВАШ (p=0,002 и p<0,001, соответственно) выявлены значимое снижение содержания ТБК-П по сравнению с исходным уровнем (p₁=0,011) и возрастание активности СОД и каталазы. Концентрации субстанции Р и норадреналина практически не изменились. В то же время выявлено наличие обратной линейной взаимосвязи между активностью каталазы и содержанием субстанции Р, r=-0,7 (p=0,006), что характеризует связь между системой ферментативной антиоксидантной защиты и ноцицептивным влиянием у пациентов с НБС при ДПНП.

Основной эффект курса терапии на сосудистую реактивность пациентов с ДПНП выражался в снижении количества пациентов с парадоксальными реакциями до 19%, а также улучшением пат-

терна сосудистой реактивности с тенденцией к увеличению прироста значений скоростей кровотока в период декомпрессии.

Таким образом, при ДПНП с НБС установлены активация процессов ПОЛ на фоне недостаточности антиоксидантной системы и дисбаланс ноцицептивных — антиноцицептивных нейромедиаторов, нарушение вазомоторной функции эндотелия в виде снижения сосудистой реактивности. После курса терапии у пациентов выявлено улучшение функции эндотелия с тенденцией к нормализации сосудистых реакций, достоверное уменьшение выраженности окислительного стресса при неизменных концентрациях нейромедиаторов. Наличие обратной линейной зависимости между активностью каталазы и уровнем субстанции Р указывает на взаимосвязь между эндогенной системой антиоксидантной защиты и ноцицептивными норадренергическими влияниями, связанными с НБС.

ЛИТЕРАТУРА

1. Нечипуренко Н.И., Пашковская И.Д., Забродец Г.В. Диабетическая полиневропатия: клинико-биохимические нарушения и их коррекция // Неврология и нейрохирургия. Восточная Европа. – 2013. – Т. 20, № 4. – С. 59-68.

РАЗВИТИЕ НЕАЛКОГОЛЬНОГО СТЕАТОГЕПАТИТА И ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ В КРОВИ

Овсянникова Т.Н. 1 , Дорош Е.Г. 2 , Забелина И.А. 1 , Коваленко И.А. 1 , Кравчун Н.А. 2

¹Харьковский национальный университет имени В.Н. Каразина; ²ГУ «Институт проблем эндокринной патологии им. В.Я.Данилевского НАМН Украины», Харьков

Введение. Одну из главных ролей в развитии неалкогольного стеатогепатита (НАСГ) отводят перекисному окислению липидов (ПОЛ), усиливающемуся за счет образования активных форм кислорода (АФК) в печени, в частности. Предполагаемые места их образования – митохондрии и эндоплазматический ретикулум гепатоцитов, а также клетки Купфера, активно перерабатывающие эритроциты с высвобождением железа [4, 5].