делю, что свидетельствует о несостоятельности антиоксидантной защиты и развитии окислительного стресса. Все это указывает на значительные внутрисистемные нарушения синхронизации ритмов изучаемых показателей системы ПОЛ и АОС слюны.

ЛИТЕРАТУРА

- 1. Агаджанян Н.А., Шабатура Н.Н. Биоритмы, спорт, здоровье. М.: Физкультура и спорт, 1989. 208 с.
- 2. Ежов, С.Н. Основные концепции биоритмологии / С.Н. Ежов // Вестник ТГЭУ. 2008. № 2. С. 104-121.
- 3. Зинчук В.В. Проблема формирования прооксидантно-антиоксидантного состояния организма // Медицинские новости. 2002. 1000 100 —
- 4. Комаров Ф.И., Рапопорт С.И. Хронобиология и хрономедицина. Триада-X, 2000. 488 с.

НИТРИТ НАТРИЯ НЕ ВЛИЯЕТ НА ГЕНЕРАЦИЮ СУПЕРОКСИД АНИОНА ОБРАЗЦАМИ МИОКАРДА КРЫСЫ В УСЛОВИЯХ ГИПОКСИИ

Гришин А.Ю., Проскурнина Е.В., Гаврилова С.А.

Московский государственный университет им. М.В. Ломоносова, Москва

Введение. Оксид азота (NO) выполняет важную регуляторную функцию в биохимических процессах организма. Низкомолекулярный газ NO, несмотря на короткое время жизни (порядка 10 с) и небольшое расстояние возможной диффузии (в среднем 30 мкм), легко проникает через клеточные мембраны и компоненты межклеточного вещества. В митохондриях кардиомиоцитов определяют митохондриальную изоформу NO-синтазы. Считается, что оксид азота, образующийся в митохондриях, конкурирует с кислородом за центры связывания в дыхательных цепях переноса электронов. Этот механизм дает возможность митохондрии «чувствовать» разную степень оксигенации. В литературе рассматривается возможность ферментативного образования NO из нитритов и нитратов в условиях ишемии при кислом значении рН и отсутствии субстратов и кофакторов для NO-синтаз. Создавая такие условия, можно попытаться заставить ферменты, например ксантиноксиредуктазу, продуцировать NO из нитрита

натрия. Увеличение концентрации NO в свою очередь должно приводить к нарушениям в цепи переноса электронов в митохондриях, что должно отражаться на скорости продукции супероксид аниона.

Цели исследования. 1. Отработать протокол регистрации продукции супероксид аниона образцами миокарда крыс в нормальных, гипоксических условиях и условиях реоксигенации ткани; 2. Проверить гипотезу ферментативного образования оксида азота в тканях миокарда из нитрита натрия в условиях гипоксии.

Материал и методы исследования. Генерацию супероксид аниона оценивали в поперечных срезах миокарда толщиной 2 мм из сердец самцов крыс Rattus Norvegicus массой 400-500 г. Срез миокарда помещали в 2 мл раствора Кребса-Рингера (рН раствора в ходе эксперимента изменялся в пределах от 7,35 в начале до 7,80 в конце) с люцигенином. В раствор добавляли 100 мкл нитрита натрия в конечных концентрациях 40, 100, 300, 500 мкМ или 100 мкл раствора Кребса-Рингера для контрольного образца. Готовые растворы со срезами помещали в хемилюминометр Lum-5773 фирмы DISoft с термостатом (T=37,5°C) и системой аэрации. Далее регистрировали кривые развития хемилюминесценции в растворе Кребса-Рингера по схеме: 30 мин. аэрация кислородосодержащей газовой смесью (15%O₂, 5%CO₂, 80%N₂), 60 мин. аэрация бескислородной газовой смесью (5% CO_2 , 95% N_2), а затем снова 30 мин. аэрация кислородосодержащей смесью, создавая тем условия самым реперфузии. На зарегистрированных хемилюминисцентных кривых изучали изменение амплитуды сигнала в срезах до и после эпизода 60 мин. гипоксии и влияние разных концентраций нитрита натрия в растворе на эти сигналы.

Результаты и их обсуждение. За первые 30 минут аэрации растворов с образцами наблюдали рост интенсивности хемилюминесцентного сигнала с последующим выходом на плато, т.е. устанавливался стационарный уровень дыхания клеток миокарда. Этот уровень принимали за базовый. При переключении аэрации на бескислородную смесь интенсивность хемилюминесцентного сигнала быстро снижалась до фонового значения и держалась на этом уровне в течение всего часа гипоксии, что свидетельствует об отсутствии дыхания митохондрий в этот период времени. После переключения аэрации на кислородную смесь для всех срезов прогнозируемо наблюдали увеличение амплитуды хемилюминесценции на 40-60% относительно базового уровня, что связано с накоплением восстановительных эквивалентов в митохондриях и, как следствие, образование дополнительного

количества супероксид аниона. Введение разных доз нитрита натрия в раствор не повлияло ни на базовый уровень, ни на изменение хемилюминесцентного сигнала после гипоксии. Возможно, условия поддержания рН в слабощелочном диапазоне во время эксперимента не позволили запустить образования NO не NO-синтазным путем. Возможно, этот механизм не реализуется в сердце крыс.

ЛИТЕРАТУРА

- 1. Haitao Li, Hongmei Cui. Nitric Oxide Production from Nitrite Occurs Primarily in Tissues Not in the Blood // The Journal of biological chemistry. 2008 Vol. 283, № 26. P. 17855-17863.
- 2. Manukhina E.B., Downey H.F. and Mallet R.T. Role of Nitric Oxide in Cardiovascular Adaptation to Intermittent Hypoxia // Exp Biol Med (Maywood). -2006. N = 231. P. 343-365.
- 3. Zweier J.L., Samouilov A., Kuppusamy P. Non-enzymatic nitric oxide synthesis in biological systems // Biochimica et Biophysica Acta. − 1999. − № 1411. − P. 250-262.
- 4. Zweier J.L., Li H., Samouilov A., and Liu X. Mechanisms of Nitrite Reduction to Nitric Oxide in the Heart and Vessel Wall // Nitric Oxide. -2010. Vol. 22, N 2. P. 83-90.

МОРФОЛОГИЧЕСКИЕ КРИТЕРИИ НЕДОСТАТКА КИСЛОРОДА ПРИ АЛЛЕРГИЧЕСКИХ ЗАБОЛЕВАНИЯХ ДЫХАТЕЛЬНЫХ ПУТЕЙ

Гуменюк С.А., Бархина Т.Г., Гущин М.Ю., Расулова А.М., Польнер С.А., Голованова В.Е.

ФГБУ НИИ морфологии человека РАМН, Москва; ФГБУ ГНЦ «Институт иммунологии» ФМБА России, Москва

Введение. По данным Всемирной Аллергологической Организации, аллергические заболевания относятся к 4 основным группам заболеваний и требуют углубленного изучения механизмов развития и разработки соответствующих эффективных методов фармакотерапии и профилактики. В настоящее время огромное внимание уделяется взаимосвязи бронхиальной астмы (БА) с другими заболеваний. Нередко у пациентов с бронхолегочной патологией развивается другое заболевание дыхательной системы (ДС), резко декомпенсирующее течение основного