«СОВРЕМЕННЫЕ ДОСТИЖЕНИЯ МОЛОДЫХ УЧЁНЫХ В МЕДИЦИНЕ» г. Гродно, 29 ноября 2019 года

- 2. Патент № 11589 по заявке № и 20170194 (2017.05.29) "Устройство для определения совокупной толщины мышц верхней стенки пахового канала при операции грыжесечения". Авторы: Смотрин С. М., Михайлов А. Н., Новицкая В. С., Жук С. А. Опубл. 2018.02.28, «Афіц. бюл.» № 1, 2018.
- 3. Патент № 11590 по заявке № и 20170200 (2017.06.05) "Устройство для интраоперационного определения высоты пахового промежутка". Авторы: Смотрин С. М., Михайлов А. Н., Новицкая В. С., Жук С. А. Опубл. 2018.02.28, «Афіц. бюл.» №1, 2018.
- 4. Реброва, О. Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ Statistica / О. Ю. Реброва. М.:, МедиаСфера, 2002. 312 с.
- 5. Смотрин, С. М. Хирургия паховых грыж в Гродненском регионе. Пути совершенствования подходов к выбору метода герниопластики / С. М. Смотрин, С. А. Визгалов, С. А. Жук, В. С. Новицкая, Д. Н. Пухов // Журнал Гродненского государственного медицинского университета. 2018. —Т.16 (4). С. 497-501.

Summary

COMPARATIVE MORPHOMETRIC CHARACTERISTICS OF TOPOGRAPHIC-ANATOMICAL PARAMETERS OF THE INGUINE CHANAL WITH HERNIA IIIA TYPE

Zhuk S. A.

Emergency Hospital, Grodno zhuk19858585@mail.ru

Intraoperative morphometry of the inguinal canal showed that with type IIIa inguinal hernias in the elderly, there is a statistically significant increase in the height of the IS compared with young and middle-aged patients, as well as a statistically significant decrease in TMT of the upper wall of the IS compared with young and middle-aged patients. The revealed differences a differentiated approach to the choice of inguinal hernioplastic.

МОРФОФУНКЦИОНАЛЬНЫЕ ПОКАЗАТЕЛИ ГИСТАМИНЕРГИЧЕСКИХ НЕЙРОНОВ МОЗГА 5-СУТОЧНОГО ПОТОМСТВА КРЫС, ПОТРЕБЛЯВШИХ ЭТАНОЛ ВО ВРЕМЯ БЕРЕМЕННОСТИ

«СОВРЕМЕННЫЕ ДОСТИЖЕНИЯ МОЛОДЫХ УЧЁНЫХ В МЕДИЦИНЕ» г. Гродно, 29 ноября 2019 года

Заерко А. В., Федина Е. М.

Гродненский государственный медицинский университет, г. Гродно, Беларусь wersall_91@mail.ru

Введение. Множественные разнообразные эффекты И этилового спирта на центральную нервную систему не оставляют сомнений о влиянии его на функции основных нейромедиаторных В отношении особый интерес представляет систем. ЭТОМ гистаминергическая система мозга, поскольку пути метаболизма гистамина и этанола в головном мозге имеют общий фермент альдегиддегидрогеназу, что является метаболической основой для их взаимодействия в центральной нервной системе [5]. Известна высокая чувствительность развивающегося мозга к алкоголю [2]. Однако изучение постнатального развития гистаминергических нейронов у крыс, подвергавшихся пренатальной алкоголизации, не проводилось, что определяет важность и актуальность настоящего исследования.

Цель исследования. Оценка влияния алкоголя на морфофункциональные показатели гистаминергических нейронов ядра Е2 заднего гипоталамуса 5-суточного потомства крыс, потреблявших алкоголь в период беременности.

Материал методы. Опыты И выполнены на самках беспородных белых крыс с начальной массой 230±20 г и их потомстве. Самки опытной группы на протяжении беременности потребляли 15% раствор этанола в качестве единственного источника питья, самкам контрольной группы предлагалась вода. Декапитация крысят осуществлялась на пятые сутки после рождения, быстро извлекали головной мозг, вырезали гипоталамус и замораживали его в парах жидкого азота. В криостате готовили серийные фронтальные срезы заднего гипоталамуса толщиной 12 мкм, часть из которых окрашивали по методу Ниссля (0,1% водным раствором тионина) для проведения дальнейшего морфометрического анализа, остальные срезы обрабатывали на выявление активности оксидоредуктаз, связанных с циклом Кребса – сукцинатдегидрогеназы (СДГ), с гликолизом – лактатдегидрогеназы (ЛДГ), с транспортом электронов – НАДН-дегидрогеназы (НАДН-ДГ) и с внемитохондриальным окислением и синтезом нуклеиновых кислот – дегидрогеназы восстановленного НАДФ (НАДФН-ДГ). При идентификации ядер

«СОВРЕМЕННЫЕ ДОСТИЖЕНИЯ МОЛОДЫХ УЧЁНЫХ В МЕДИЦИНЕ» г. Гродно, 29 ноября 2019 года

гистаминергической системы мозга крысы использовали соответствующие топографические схемы [4].

Количественную оценку размеров и формы гистаминергических нейронов ядра Е2 проводили на окрашенных по методу Ниссля микропрепаратах измерением следующих параметров: минимального и максимального диаметров, периметра, площади, объема нейронов, форм-фактора и фактора элонгации. Цитофотометрическое исследование проводили, определяя оптическую плотность полученного осадка хромогена в цитоплазме нейронов на максимуме поглощения окрашенных продуктов реакции.

Данные цито- и морфометрических исследований получили с помощью микроскопа Axioskop 2 plus (Zeiss, Германия), встроенной цифровой видеокамеры Leica (DFC 320, Германия), а также программы анализа изображения ImageWarp (BitFlow, США).

Полученные результаты обработали методами непараметрической статистики с помощью лицензионной программы Statistica 6.0 для Windows. Для всех исследованных показателей определяли базовые параметры описательной статистики: значение медианы и границы процентилей (от 25 до 75). Сравнение групп по одному признаку проводили с помощью критерия Манна-Уитни для независимых выборок (Маnn-Whitney U-test). Различия между группами считали статистически значимыми, если вероятность ошибочной оценки не превышала 5%.

Результаты исследований. В ходе изучения структурных перикарионов гистаминергических изменений нейронов гипоталамуса пятисуточного потомства крыс, потреблявших алкоголь в период беременности, при сравнении с контрольной группой животных (Mann-Whitney U test) обнаружено наличие морфологическим следующим различий ПО увеличение максимального и минимального диаметра, периметра, площади и объема перикарионов гистаминергических нейронов на 26,63% (p=0.02), 27.02% (p=0.006), 21.39% (p=0.001), 31.55% $(p=\overline{0},001)$ и 43,37% (p=0,0002), соответственно. Это, возможно, свидетельствует о токсическом набухании исследованных нейронов в результате отека структур головного мозга крыс, перенесших хроническую пренатальную алкоголизацию. Выявленное изменение размеров перикарионов гистаминергических нейронов является временным, поскольку по данным ранее проведенных нами исследований у крыс опытной группы на 45-е сутки постнатального развития данные показатели становятся ниже контрольных значений [1].

Клеточный ответ на пренатальную алкогольную интоксикацию проявляется гистаминергических нейронов y перестройкой энергетического метаболизма. Так, у крысят опытной группы наблюдается снижение активности НАДФН-ДГ на 57,34% (p=0.005)обусловлено угнетением процессов ЧТО внемитохондриального окисления и синтеза нуклеиновых кислот. НАЛН-ЛГ снижение активности отмечается переносе митохондриального фермента, участвующего электронов в дыхательной цепи – на 29,53% (р=0,005) и снижение активности СДГ – маркерного фермента митохондрий – на 50,54% (p=0.005)угнетение что указывает на окислительновосстановительных реакций в цикле Кребса, снижение уровня энергообмена и отражает ухудшение работы митохондриальной системы трансформации [3]. Это подтверждается сопутствующим увеличением активности ЛДГ на 55,97% (р=0,005), отражающим компенсаторное усиление активности анаэробного гликолиза.

Выводы. Потребление алкоголя крысами в период беременности вызывает серьезные структурные и метаболические изменения в гистаминергических нейронах гипоталамуса их пятисуточного потомства.

Литература

- 1. Заерко, А. В. Морфофункциональное состояние гистаминергических нейронов мозга 45-суточного потомства крыс, потреблявших этанол во время беременности / А. В. Заерко, Е. М. Федина, С. М. Зиматкин // Журнал ГрГМУ. -2018. -T. 16, $Noldsymbol{16}$ 6. C. 685 -689.
- 2. Зиматкин, С. М. Нарушения в мозге при антенатальной алкоголизации : монография / С. М. Зиматкин, Е. И. Бонь. Гродно : ГрГМУ, 2017. 192 с.
- 3. Савченко А. А. Основы клинической иммунометаболомики А. А. Савченко, А. Г. Борисов. Новосибирск : Наука, 2012. 263 с.
- 4. Paxinos, G. The rat brain in stereotaxic coordinates / G. Paxinos, Ch. Watson. 2-nd ed. New York: Academic Press, 1986. 320 p.
- 5. Zimatkin, S. M. Alcohol-histamine interactions / S. M. Zimatkin, O. V. Anichtchik // Alcohol Alcohol. 1999. Vol. 34. P.97–99.

Summary

MORPHOFUNCTIONAL INDICATORS OF THE BRAIN HISTAMINERGIC NEURONS OF THE 5-DAY RAT OFFSPRING CONSUMED ETHANOL DURING PREGNANCY

Zaerko A.V., Phedina K.M.

Grodno State Medical University, Grodno wersall 91@mail.ru

The consumption of alcohol by female rats during pregnancy disturbs the structure and metabolism of the developing hypothalamic histaminergic neurons of their 5-day offspring. The histaminergic neurons bodies increase in sizes and inhibition of NADPhH dehydrogenase, NADH dehydrogenase, succinate dehydrogenase, and activation of lactate dehydrogenases in their cytoplasm are observed.

ВОЗМОЖНОСТИ КАРДИОВАСКУЛЯРНОГО ТЕСТИРОВАНИЯ В ОЦЕНКЕ СУТОЧНОЙ ДИНАМИКИ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ У МОЛОДЫХ МУЖЧИН С ГИПЕРТЕНЗИВНЫМ СИНДРОМОМ

Заяц А. Н.

Гродненский государственный медицинский университет, г. Гродно, Беларусь ро an ni@mail.ru

Распространенность артериальной гипертензии Введение. $(A\Gamma)$ среди мужчин в возрасте 18-29 лет составляет 23,4%, в $^{3}/_{4}$ случаев представлена АГ I степени. В возрастной группе 30-44 лет распространенность АГ увеличивается до 48,7%. Особенностью гипертензивного синдрома (ГС) молодого возраста является связь с вегетативным дисбалансом. Механизмы вегетативного контроля участвуют В модуляции сердечного ритма, регуляции артериального давления (АД) как в покое, так и при выполнении нагрузок, структурные изменения сердца И сосудов осуществляются нейроэндокринными механизмами.

Анализ вариабельности ритма сердца (ВРС) позволяет оценить вклад вегетативных и надсегментарных структур в модуляцию сердечного ритма, а результаты кардиоваскулярного тестирования (КВТ) — охарактеризовать реактивность структур.