В ходе исследования получены следующие результаты:

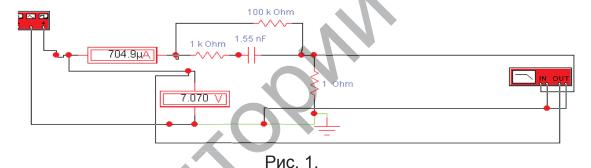
- 1) фразеологические единицы английского и русского языков, отражающих здоровье и состояние человека, имеют высокую межъязыковую фразеологическую эквивалентность. Это объясняется тем, что ядра (т.е. слова, отражающие физическое и физиологическое состояние организма) входят в высокочастотную и исконную лексику каждого из языков и обладают высокой фразообразовательной активностью, что повышает степень межъязыковой эквивалентности;
- 2) расхождения фразеологических единиц двух языков касаются их структурно-грамматической организации, также заметны и стилистические расхождения;
- 3) 37% фразеологических единиц метафоричны, что в свою очередь приводит к расхождениям в переводе фразеологизмов с английского на русский язык, связанные с разной этнической базой;
- 4) 80% исследуемых фразеологизмов имеют только отрицательную коннотацию;
- 5) семантический анализ показывает, что ближе всего к ядру семантического поля 'здоровье человека' находятся фразеологизмы, отражающие физиологическое состояние человек с отрицательной коннотацией.

Литература:

- 1. Амбражейчик, А.Д. 2000 русских и 2000 английских идиом, фразеологизмов и устойчивых словосочетаний / А.Д. Амбражейчик. Мн., 2005. 304 с.
- 2. Пархамович, Т.В. 1000 русских и 1000 английских идиом: Словарь с пояснениями и примерами использования / Т.В. Пархамович. Мн., 2003. 128 с.

ИЗУЧЕНИЕ ДИСПЕРСИИ ИМПЕДАНСА ЭКВИВАЛЕНТНЫХ ЭЛЕКТРИЧЕСКИХ СХЕМ БИОЛОГИЧЕСКИХ ТКАНЕЙ

Тарасик А.С., Кандыба К.Г.


Гродненский государственный медицинский университет, Беларусь Кафедра медицинской и биологической физики Научный руководитель – ст. препод. Лукашик Е.Я.

Биологическим объектам присущи пассивные электрические свойства: сопротивление и емкость. Изучение пассивных электрических свойств биологических объектов имеет большое значение для понимания их структуры и физико-химических свойств. Для биологического объекта активная составляющая импеданса связана в первую очередь с проводимостью внутренних жидких сред, являющихся электролитами. Реактивная компонента импеданса определяется емкостными свойствами биологической ткани, в частности, емкостью биологических мембран. Наличие активных и реактивных свойств импеданса можно моделировать, используя эквивалентные электрические схемы.

Целью работы является изучение эквивалентных электрических схем биологических тканей, содержащих резистивные и емкостные сопротивления с помощью электронного симулятора Electronics Workbench (EWB). Программа EWB предназначена для схематического представления и моделирования аналоговых, цифровых и аналогово-цифровых цепей. Пакет включает в себя средства редактирования, моделирования и виртуальные инструменты тести-

рования электрических схем. В работе используются виртуальные инструменты: вольтметры, амперметры, осциллограф, функциональный генератор, графопостроитель. Численные значения напряжения и силы тока используются для вычисления модуля импеданса. Графопостроитель используется для построения амплитудно-частотных (АЧХ) и фазо-частотных (ФЧХ) характеристик схемы. Графопостроитель измеряет отношение амплитуд сигналов в двух точках схемы и фазовый сдвиг между ними. Для измерений графопостроитель генерирует собственный спектр частот, диапазон которого может задаваться при настройке прибора. Частота любого переменного источника в исследуемой схеме игнорируется, однако схема должна включать какой-либо источник переменного тока.

Рассмотрим одну из эквивалентных схем, состоящую из двух сопротивлений R1 (100 кОм), R2 (1 кОм) и конденсатора C1 (1,55 нФ). Она обеспечивает наилучшее согласование с экспериментом: на низких частотах величина импеданса определяется сопротивлением R1, на высоких частотах - параллельным соединением сопротивлений R1 и R2. На рис.1 представлена ее виртуальная модель в среде EWB, в которой есть генератор, амперметр, вольтметр, графопостроитель и сама эквивалентная схема. Модуль импеданса эквивалентной схемы вычисляется по закону Ома через измерения напряжения и силы переменного тока.

Таким образом, использование электронного симулятора EWB позволяет изменять элементы эквивалентной схемы и их номинальные значения, представлять графическую зависимость импеданса от частоты в широком частотном диапазоне, изучать фазовые сдвиги между током и напряжением на разных частотах.

НЕЙРОВИЗУАЛИЗАЦИОННАЯ ОЦЕНКА ВНУТРИМОЗГОВОГО КРОВОИЗЛИЯНИЯ

Тименова С.В.

Гродненский государственный медицинский университет, Беларусь Кафедра неврологии и нейрохирургии Научный руководитель – д-р мед. наук, доц. Кулеш С.Д.

Актуальность. Нетравматическое внутримозговое кровоизлияние (ВМК) является одной из важнейших проблем ангионеврологии. Благодаря внедрению в клинику компьютерной и магнитно-резонансной томографии значитель-