- 6. Salehi F., Behboudi H., Kavoosi G. et al. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin // Sci Rep. -2018. Vol. 8, N 1. P. 13902. doi: 10.1038/s41598-018-32308-2.
- 7. Wikiera A., Mika M., Starzyńska-Janiszewska A. et al. Application of Celluclast 1.5L in apple pectin extraction // Carbohydr. Polym. 2015. Vol. 134. P. 251-257.
- 8. Martinov J., Krstić M., Spasić S. et al. Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus // Food Res. Int. 2017. Vol. 100, Pt 2. P. 132-136.
- 9. Garcia-Mazcorro J.F., Pedreschi R., Yuan J. et al. Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet // PLoS One. -2019. Vol. 14, $Noldsymbol{Noldsymbol{o}} 3. <math>-$ e0212586. doi: 10.1371/journal.pone.0212586.eCollection 2019.
- 10. Sardarodiyan M., Sani A.M. Natural antioxidants: sources, extraction and application in food systems // Nutr. Food Sci. -2016. Vol. 46, N 3. P. 363-373. doi: 10.1108/NFS-01-2016-0005.
- 11. Чупахина Г.Н., Масленников П.В., Скрыпник Л.Н. и др. Антиоксидантные свойства культурных растений Калининградской области. Калининград: Балтийский федер. ун-т им. И. Канта, 2016. 145 с.

АКТИВНОСТЬ АНТЙОКСИДАНТНОЙ СИСТЕМЫ В ЭРИТРОЦИТАХ У ДЕТЕЙ С ЖЕЛЕЗОДЕФИЦИТНЫМИ АНЕМИЯМИ ДО И ПОСЛЕ ЛЕЧЕНИЯ

Зубрицкая Г. П.¹, Климкович Н. Н.², Кутько А. Г.¹, Венская Е. И.¹, Скоробогатова А. С.¹, Козарезова Т. И.², Слобожанина Е. И.¹

¹Институт биофизики и клеточной инженерии НАН Беларуси, г. Минск, Беларусь, *petro371@mail.ru*

²Белорусская медицинская академия последипломного образования, г. Минск, Беларусь

Введение. Дефицит железа является одним из самых распространенных патологических состояний всего населения Земли. Особенно подвержены риску развития дефицита железа дети первых трех лет жизни, девочки-подростки и женщины

репродуктивного возраста [1]. Известно, что в процессы, связанные с патологическими изменениями клеток у пациентов с железодефицитными анемиями (ЖДА), вовлекается индуцированный свободными радикалами окислительный стресс, который вызывает повреждение мембран и клеточных структур [2]. Основной способ защиты клетки от свободных радикалов и активных форм кислорода — восстановление последних с помощью низкомолекулярных антиоксидантов и «ферментов II фазы защиты от окислительного стресса и токсических веществ». К этим ферментам относят супероксиддисмутазу, глутатионпероксидазу (ГП), каталазу, глутатион-S-трансферазу (GST) и многие другие. Несмотря на большое количество работ, посвященных исследованию как антиоксидантной системы (АОС) защиты, так и процессам окисления при ЖДА, вопрос о роли данных нарушений в развитии анемических состояний остается недостаточно изученным.

Цель – выяснить, изменяется ли активность АОС в эритроцитах у детей при ЖДА после лечения препаратами железа.

Методы исследования. Проведен анализ образцов крови 20 детей с ЖДА в возрасте от 5 до 17 лет до и после ферротерапии (на первые и 14-е сутки поступления в стационар). Образцы крови детей получены из ГУ «Республиканская детская больница медицинской реабилитации». Забор периферической крови для исследования осуществлялся после подписания родителями пациента формы информированного согласия на участие в исследовании. Пациенты с ЖДА получали ферронал и сорбифер. Эритроциты отделяли от плазмы путем центрифугирования крови при 3000 об/мин в течение 15 минут. Определение активности каталазы основано на образовании окрашенного в желтый цвет комплекса неразрушенного в ходе каталазной реакции пероксида водорода с молибдатом аммония. Мерой активности ГП является скорость окисления глутатиона в присутствии гидроперекиси третичного бутила. Активность GST определяли по скорости образования глутатион-S-конъюгатов между GSH и 1-хлор-2,4,-динитробензолом. Концентрацию GSH определяли по методу Элмана.

Результаты и их обсуждение. ГП является наиболее важным элементом системы глутатиона, которому принадлежит

основная роль в утилизации липидных гидроперекисей и пероксида водорода. Результаты проведенных нами исследований показали, что среднее значение активности ГП в эритроцитах у детей с ЖДА во время лечения имело тенденцию к снижению по сравнению с таковым до лечения (таблица). Активность каталазы, функция которой заключается также в утилизации пероксида водорода, у детей с ЖДА после лечения была достоверно снижена по сравнению с аналогичным показателем до лечения (примерно на 30-35%, P<0,05) (таблица). На основании полученных результатов можно предположить, что снижение активности ГП и каталазы связано с нарушением системы редокс-регуляции в эритроцитах при ЖДА.

GST играет двойную роль в защите клетки от окислительного стресса: восстановление АФК, фосфолипидов и белков и конъюгирование с GSH вторичных метаболитов окислительного стресса. Установлено, что в эритроцитах у детей с ЖДА во время лечения наблюдалась тенденция к уменьшению среднего значения активности GST по сравнению с данным показателем до лечения (таблица). Причем обнаружены индивидуальные различия активности GST у пациентов до и после лечения. Из 20 обследованных детей с ЖДА активность GST была повышена у 7 на фоне приема препаратов железа. Концентрация GSH в эритроцитах у детей с ЖДА во время лечения была снижена по сравнению с концентрацией до начала терапии (таблица).

Таблица — Активность ферментов антиоксидантной системы защиты и уровень GSH в эритроцитах у детей с ЖДА до и после лечения

	Активность ферментов в эритроцитах			Концен-
Обследованные группы детей с ЖДА	ГП (мкМ/мин на 1 г Нb)	каталаза (мккат/мл)	GST (мкМ/мин/ мг Hb)	трация GSH, мМ
До лечения препаратами железа (первые сутки)	275,8±18,2	5,8±0,30	105,4±5,9	0,62±0,006
После лечения препаратами железа (14-е сутки)	240,5±15,0 (P<0,1)	4,0±0,27* (P<0,05)	98,2±6,5	0,53±0,005

Примечание — * — достоверность различий анализируемого показателя в группах сравнения

Выводы. На основании полученных результатов можно заключить, что прием препаратов железа с целью устранения железодефицитного состояния у детей приводит к усилению оксидантного стресса в эритроцитах. В настоящее время мы продолжаем изучение этого вопроса на более широком количестве пациентов с ЖДА с учетом их индивидуальных ответов на лечение, чтобы в дальнейшем была возможность учитывать это при применении протоколов ферротерапии и обосновании назначения антиоксидантов при ЖДА.

Литература

- 1. Cotta R. M., Oliveira F. de C., Magalhaes K. A. et al. Social and biological determinants of iron deficiency anemia // Cad. Saude Publica. 2011. Vol. 27. P. 309-320.
- 2. Занько С. Н., Климкович Н. Н. и др. Железодефицитные состояния в системе мать-плод-ребенок: пособие для врачей. Минск: ИП Кучеренко. 2016.-52 с.

КИСЛОРОДТРАНСПОРТНАЯ ФУНКЦИЯ И ПРООКСИДАНТНО-АНТИОКСИДАНТНОЕ СОСТОЯНИЕ КРОВИ ПРИ ПАЛЛИАТИВНОЙ ХИРУРГИИ ХРОНИЧЕСКОЙ КРИТИЧЕСКОЙ ИШЕМИЙ НИЖНИХ КОНЕЧНОСТЕЙ

Иоскевич Н. Н.¹, Засимович В. Н.²

 1 Гродненский государственный медицинский университет, г. Гродно, Беларусь 2 Брестская областная больница, г. Брест, Беларусь $inngrno@mail.ru^I\\zacimovich.v@gmail.com^2$

Введение. Адекватное восстановление артериального кровотока в нижних конечностях при выполнении прямых реконструктивных операций на бедренно-подколенном сегменте вследствие атеросклеротического поражения (АП) артерий сопровождается возникновением синдрома постишемической